精英家教网 > 初中数学 > 题目详情
若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.
考点:二次函数的性质,二次函数的最值
专题:代数综合题,压轴题,新定义
分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.
(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.
解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x-h)2+k,
当a=2,h=3,k=4时,
二次函数的关系式为y=2(x-3)2+4.
∵2>0,
∴该二次函数图象的开口向上.
当a=3,h=3,k=4时,
二次函数的关系式为y=3(x-3)2+4.
∵3>0,
∴该二次函数图象的开口向上.
∵两个函数y=2(x-3)2+4与y=3(x-3)2+4顶点相同,开口都向上,
∴两个函数y=2(x-3)2+4与y=3(x-3)2+4是“同簇二次函数”.
∴符合要求的两个“同簇二次函数”可以为:y=2(x-3)2+4与y=3(x-3)2+4.

(2)∵y1的图象经过点A(1,1),
∴2×12-4×m×1+2m2+1=1.
整理得:m2-2m+1=0.
解得:m1=m2=1.
∴y1=2x2-4x+3
=2(x-1)2+1.
∴y1+y2=2x2-4x+3+ax2+bx+5
=(a+2)x2+(b-4)x+8
∵y1+y2与y1为“同簇二次函数”,
∴y1+y2=(a+2)(x-1)2+1
=(a+2)x2-2(a+2)x+(a+2)+1.
其中a+2>0,即a>-2.
b-4=-2(a+2)
8=(a+2)+1

解得:
a=5
b=-10

∴函数y2的表达式为:y2=5x2-10x+5.
∴y2=5x2-10x+5
=5(x-1)2
∴函数y2的图象的对称轴为x=1.
∵5>0,
∴函数y2的图象开口向上.
①当0≤x≤1时,
∵函数y2的图象开口向上,
∴y2随x的增大而减小.
∴当x=0时,y2取最大值,
最大值为5(0-1)2=5.
②当1<x≤3时,
∵函数y2的图象开口向上,
∴y2随x的增大而增大.
∴当x=3时,y2取最大值,
最大值为5(3-1)2=20.
综上所述:当0≤x≤3时,y2的最大值为20.
点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加工销售三种销售方式,这三种销售方式每吨荸荠的利润如下表:
销售方式批发零售加工销售
利润(百元/吨)122230
设按计划全部售出后的总利润为y百元,其中批发量为x吨,且加工销售量为15吨.
(1)求y与x之间的函数关系式;
(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD⊥BC,垂足为D,点E在AB上,EF⊥BC,垂足为F.
(1)AD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:
①玩家只能将小兔从A、B两个出入口放入;
②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.
(1)问小美得到小兔玩具的机会有多大?
(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,在等腰△ABC中.AB=AC=a,面积是S,点P在BC上移动,过点P作PD⊥AB于点D,PE⊥AC于点E,那么点P到两腰的距离PD+PE等于什么?证明你的结论.
(2)如图2,在等边△ABC中,边长是a,面积是S,点P是△ABC内部一点,P到三边的距离之和又等于什么?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)(x-1)(x2+x+1);                      
(2)(-2a+b)(-2a-b);
(3)(2a-3b)2-2(2a-3b)(a-b).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x+y=3,xy=2,求x2+y2、(x-y)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为
 

查看答案和解析>>

同步练习册答案