精英家教网 > 初中数学 > 题目详情

已知:在△ABC中,CD是AB边上的高,∠DEB=∠ACB,∠1+∠2=180°.试判断FG与AB的位置关系,并说明理由.
解:FG⊥AB,理由:
∵∠DEB=∠ACB(已知)
∴________(同位角相等,两直线平行)
∴∠1=∠3(________)
∵∠1+∠2=180°(已知)
∴∠3+∠2=180°(________)
∴________(同旁内角互补,两直线平行)
∵CD是AB上的高(已知)
∴∠CDA=90°(________)
∴________=∠CDA(两直线平行,同位角相等)
∴FG⊥AB(________)

DE∥AC    两直线平行,内错角相等    等量代换    FG∥CD    三角形高的定义    ∠FGD    垂直的定义
分析:由∠DEB=∠ACB,根据平行线的判定定理得到DE∥AC,则∠1=∠3,而∠1+∠2=180°,得到∠3+∠2=180°,根据同旁内角互补,两直线平行得到FG∥CD,再根据性质得到∠FGD=∠CDA,然后利用三角形高得定义有∠CDA=90°,则∠FGD=90°,然后根据垂直的定义即可得到FG⊥AB.
解答:FG⊥AB,理由如下:
∵∠DEB=∠ACB,
∴DE∥AC,
∴∠1=∠3,
∵∠1+∠2=180°,
而∠1+∠2=180°,
∴∠3+∠2=180°,
∴FG∥CD,
∴∠FGD=∠CDA,
∵CD是AB上的高,
∴∠CDA=90°,
∴∠FGD=90°,
∴FG⊥AB.
故答案为DE∥AC;两直线平行,内错角相等;等量代换;FG∥CD;三角形高的定义;∠FGD;垂直的定义.
点评:本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角相等;同旁内角互补,两直线平行.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案