精英家教网 > 初中数学 > 题目详情
已知方程在实数范围内恒有解,并且恰有一个解大于1小于2,则的取值范围是
(       )。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的方程mx2-3(m-1)x+2m-3=0.
(1)求证:m取任何实数量,方程总有实数根;
(2)若二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;
①求二次函数y1的解析式;
②已知一次函数y2=2x-2,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≥y2均成立;
(3)在(2)条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,求二次函数y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程x2+(a-3)x+3=0在实数范围内恒有解,并且恰有一个解大于1小于2,a的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在实数范围内定义一种运算“*”,其规则为a*b=a2-b2,如5*3=52-32=16.根据这一规则,解决问题:已知三角形的每条边都是方程(x-3)*1=0的根,则此三角形的周长为
6或12或10
6或12或10

查看答案和解析>>

科目:初中数学 来源:2010年北京市西城区中考数学一模试卷(解析版) 题型:解答题

(2010•西城区一模)已知:关于x的方程mx2-3(m-1)x+2m-3=0.
(1)求证:m取任何实数量,方程总有实数根;
(2)若二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;
①求二次函数y1的解析式;
②已知一次函数y2=2x-2,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≥y2均成立;
(3)在(2)条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,求二次函数y3=ax2+bx+c的解析式.

查看答案和解析>>

同步练习册答案