分析 根据旋转的性质得AE=AC,∠CAB=∠EAD=70°,再根据等腰三角形的性质得∠AEC=∠ACE,然后根据平行线的性质由CE∥AB得∠ACE=∠CAB=70°,则∠AEC=∠ACE=70°,再根据三角形内角和计算出∠CAE=40°,所以∠CAD=30°
解答 解:∵△ABC绕点A逆时针旋转到△AED的位置,
∴AE=AC,∠CAB=∠EAD=70°,
∴∠ACE=∠AEC,
∵CE∥AB,
∴∠ACE=∠CAB=70°,
∴∠AEC=∠ACE=70°,
∴∠CAE=180°-2×70°=40°,
∴∠CAD=∠EAD-∠EAC=30°
故答案为:30.
点评 本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3x2•4x2=12x2 | B. | $\frac{x^2}{y^2}=\frac{x}{y}$(y≠0) | ||
| C. | 2$\sqrt{x}+3\sqrt{y}=5\sqrt{xy}$(x≥0,y≥0) | D. | xy2÷$\frac{1}{2y}=2x{y^3}$(y≠0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com