【题目】如图,正方形的边长为,点从开始沿折线以的速度移动,点从开始沿边以的速度移动,如果点,分别从,同时出发,当其中一点到达时,另一点也随之停止运动.
(1)设的面积为,为运动时间,写出关于的函数表达式;
(2)为何值时,的面积为正方形面积的?
【答案】(1);(2)当t=5s时,的面积为正方形面积的.
【解析】
(1)当0≤t≤5时,点P在AD上,则△PQB的面积等于正方形的面积减去三个直角三角形的面积;当5<t≤10时,点P在CD上,△PQB面积等于PQ×10;
(2)结合(1)中的结论,分别列出方程求解即可.
解:(1)当0≤t≤5时,点P在AD上,
由题意得:AP=2t,DP=10-2t,DQ=t,CQ=10-t,
∵S△PQB=S正方形ABCD-S△APB-S△DPQ-S△BCQ,
∴;
当5<t≤10时,点P在CD上,
由题意得:PQ=t-(2t-10)=10-t,
∴,
综上所述:;
(2)S正方形ABCD=10×10=100,
当0≤t≤5时,由题意得:,
解得:t=5;
当5<t≤10时,由题意得:,
解得:t=5(舍去),
综上,当t=5s时,的面积为正方形面积的.
科目:初中数学 来源: 题型:
【题目】细心观察图形,认真分析各式,然后解答问题.
OA22=,;
OA32=12+,;
OA42=12+,…
(1)请用含有n(n是正整数)的等式表示上述变规律:OAn2等于多少;Sn等于多少.
(2)求出OA10的长.
(3)若一个三角形的面积是,计算说明他是第几个三角形?
(4)求出S12+S22+S32+…+S102的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.
(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接
写出结论;
(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;
将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;
……
如此进行下去,直至得C13.
若P(1,m)在C1上,则m =_________.
若P(37,n)在第13段抛物线C13上,则n =_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实际问题
某批发商以元/ 的成本价购入了某产品,据市场预测,该产品的销售价(元/ )与保存时间(天)的函数关系为,但保存这批产品平均每天将损耗.另外,批发商每天保存该批产品的费用为元.已知该产品每天的销量不超过,若批发商希望通过这批产品卖出获利元,则批发商应在保存该产品多少天时一次性卖出?
小明的思路及解答
本题的相等关系是:
销售价销量成本价销量保存费用获利.
解:设批发商应在保存该产品天时一次性卖出可获利元.
根据上面的相等关系,
得.
解这个方程,得, .
当时, (不合题意,舍去),
当时, .
答:批发商应在保存该产品天时一次性卖出可获利元.
数学老师的批改
数学老师在小明的解答中画了一条横线,并打了一个“”.
你的观点及做法
()请指出小明错误的原因.
()重新给出正确的解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判断这个四边形是平行四边形的条件共有
A. 1组 B. 2组 C. 3组 D. 4组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)()﹣2﹣(﹣2)0+(﹣0.2)2018×(﹣5)2018;
(2)用整式乘法公式计算:1012﹣1;
(3)(x2y+2x2y﹣y3)÷y﹣(y+2x)(2x﹣y);
(4)先化简,再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中,a=1,b=﹣2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“年冬季越野赛”在滨河学校操场举行,某运动员从起点学校东门出发,途径湿地公园,沿比赛路线跑回终点学校东门.沿该运动员离开起点的路程(千米)与跑步时间(时间)之间的函数关系如图所示,其中从起点到湿地公园的平均速度是千米/分钟,用时分钟,根据图像提供的信息,解答下列问题:
()求图中的值;
()组委会在距离起点千米处设立一个拍摄点,该运动员从第一次过点到第二次过点所用的时间为分钟.
①求所在直线的函数解析式;
②该运动员跑完全程用时多少分钟?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com