C
分析:根据等腰直角三角形的性质可得AP⊥BC,AP=PC,∠EAP=∠C=45°,根据同角的余角相等求出∠APE=∠CPF,判定②正确,然后利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,判定①正确,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,判定③正确;根据等腰直角三角形的斜边等于直角边的

倍表示出EF,可知EF随着点E的变化而变化,判定④错误,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半,判定⑤正确.
解答:

解:∵AB=AC,∠BAC=90°,点P是BC的中点,
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF,故②正确;
在△APE和△CPF中,

,
∴△APE≌△CPF(ASA),
∴AE=CF,故①正确;
∴△EFP是等腰直角三角形,故③正确;
根据等腰直角三角形的性质,EF=

PE,
所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=

PE=AP,在其它位置时EF≠AP,故④错误;
∵△APE≌△CPF,
∴S
△APE=S
△CPF,
∴S
四边形AEPF=S
△APF+S
△APE=S
△APF+S
△CPF=S
△APC=

S
△ABC,故⑤正确,
综上所述,正确的结论有①②③⑤共4个.
故选C.
点评:本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.