分析 (1)由待定系数法即可得到结论;
(2)根据图象中的信息即可得到结论;
(3)过A作AM⊥x轴,过B作BN⊥x轴,由(1)知,b=5,k=4,得到直线的表达式为:y=-x+5,反比例函数的表达式为:$y=\frac{4}{x}$列方程$-x+5=\frac{4}{x}$,求得B(4,1),于是得到${S_{△AOB}}={S_{四边形ANMB}}=\frac{1}{2}(AN+BM)MN=\frac{1}{2}(1+4)×3=\frac{15}{2}$,由已知条件得到${S_{△PAC}}=\frac{2}{5}×\frac{15}{2}=3$,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),根据三角形的面积公式列方程即可得到结论.
解答
解:(1)将A(1,4)分别代入y=-x+b和$y=\frac{k}{x}$
得:4=-1+b,4=$\frac{k}{1}$,解得:b=5,k=4;
(2)一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1,
(3)过A作AN⊥x轴,过B作BM⊥x轴,
由(1)知,b=5,k=4,
∴直线的表达式为:y=-x+5,反比例函数的表达式为:$y=\frac{4}{x}$
由$-x+5=\frac{4}{x}$,解得:x=4,或x=1,
∴B(4,1),
∴${S_{△AOB}}={S_{四边形ANMB}}=\frac{1}{2}(AN+BM)MN=\frac{1}{2}(1+4)×3=\frac{15}{2}$,
∵${S_{△PAC}}=\frac{2}{5}{S_{{△_{AOB}}}}$,
∴${S_{△PAC}}=\frac{2}{5}×\frac{15}{2}=3$,
过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),
∴S△PAC=$\frac{1}{2}$OP•CD+$\frac{1}{2}$OP•AE=$\frac{1}{2}$OP(CD+AE)=|t|=3,
解得:t=3,t=-3,
∴P(0,3)或P(0,-3).
点评 本题考查了一次函数与反比例函数的交点问题,三角形的面积的计算,待定系数法求函数的解析式,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 2cm | B. | 3cm | C. | 4cm | D. | 5cm |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 线段EF的长度不变 | B. | 随D点的运动而变化,最小值为4$\sqrt{3}$ | ||
| C. | 随D点的运动而变化,最小值为2$\sqrt{3}$ | D. | 随D点的运动而变化,没有最值 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 抛物线开口方向向下 | B. | 当x=3时,函数有最大值-2 | ||
| C. | 当x>3时,y随x的增大而减小 | D. | 抛物线可由y=$\frac{1}{2}$x2经过平移得到 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 5 | B. | 10 | C. | 5$\sqrt{2}$ | D. | 5$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com