【题目】已知二次函数y=ax2+bx+c(a≠0)的图象经过点(1,0),(5,0),(3,﹣4).
(1)求该二次函数的解析式;
(2)A、B为直线y=﹣2x﹣6上两动点,且距离为2,点C为二次函数图象上的动点,当点C运动到何处时△ABC的面积最小?求出此时点C的坐标及△ABC面积的最小值.
【答案】
(1)
解:∵点(1,0),(5,0),(3,﹣4)在抛物线上,
∴ ,
解得 .
∴二次函数的解析式为:y=x2﹣6x+5.
(2)
解:
设直线y=﹣2x﹣6与x轴,y轴分别交于点M,点N,
令x=0,得y=﹣6;令y=0,得x=﹣3
∴M(﹣3,0),N(0,﹣6),
∴OM=3,ON=6,由勾股定理得:MN=3 ,
∴tan∠MNO= = ,sin∠MNO= = .
设点C坐标为(x,y),则y=x2﹣6x+5.
过点C作CD⊥y轴于点D,则CD=x,OD=﹣y,DN=6+y.
过点C作直线y=﹣2x﹣6的垂线,垂足为E,交y轴于点F,
在Rt△CDF中,DF=CDtan∠MNO= x,CF= = = x.
∴FN=DN﹣DF=6+y﹣ x.
在Rt△EFN中,EF=FNsin∠MNO= (6+y﹣ x).
∴CE=CF+EF= x+ (6+y﹣ x),
∵C(x,y)在抛物线上,∴y=x2﹣6x+5,代入上式整理得:
CE= (x2﹣4x+11)= (x﹣2)2+ ,
∴当x=2时,CE有最小值,最小值为 .
当x=2时,y=x2﹣6x+5=﹣3,∴C(2,﹣3).
△ABC的最小面积为: ABCE= ×2× = .
∴当C点坐标为(2,﹣3)时,△ABC的面积最小,面积的最小值为 .
【解析】(1)利用待定系数法求出抛物线的解析式;(2)△ABC的底边AB长度为2,是定值,因此当AB边上的高最小时,△ABC的面积最小.如解答图所示,由点C向直线y=﹣2x﹣6作垂线,利用三角函数(或相似三角形)求出高CE的表达式,根据表达式求出CE的最小值,这样问题得解.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y= x+1与抛物线y=ax2+bx﹣3交于A,B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作x轴的垂线交直线AB与点C,作PD⊥AB于点D
(1)①求抛物线的解析式;②求sin∠ACP的值
(2)设点P的横坐标为m
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连接PB,线段PC把△PDB分成两个三角形,求出当这两个三角形面积之比为9:10时的m值;
③是否存在适合的m值,使△PCD与△PBD相似?若存在,直接写出m值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.
(1)请用列表法或树状图表示出所有可能出现的游戏结果;
(2)求韦玲胜出的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级为建立学习兴趣小组,对语文、数学、英语、物理、化学、思想品德、历史、综合共八个科目的喜欢情况进行问卷调查(每人只选一项),下表是随机抽取部分学生的问卷进行统计的结果:
科目 | 语文 | 数学 | 英语 | 物理 | 化学 | 思想品德 | 历史 | 综合 |
人数 | 6 | 10 | 11 | 12 | 10 | 9 | 8 | 14 |
根据表中信息,解答下列问题:
(1)本次随机抽查的学生共有人;
(2)本次随机抽查的学生中,喜欢科目的人数最多;
(3)根据上表中的数据补全条形统计图;
(4)如果该校九年级有600名学生,那么估计该校九年级喜欢综合科目的学生有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是( )
A.y=2x+1
B.y= x﹣2x2
C.y=2x﹣ x2
D.y=2x
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应区“美丽广西 清洁乡村”的号召,某校开展“美丽广西 清洁校园”的活动,该校经过精心设计,计算出需要绿化的面积为498m2 , 绿化150m2后,为了更快的完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果一共用20天完成了该项绿化工作.
(1)该项绿化工作原计划每天完成多少m2?,
(2)在绿化工作中有一块面积为170m2的矩形场地,矩形的长比宽的2倍少3m,请问这块矩形场地的长和宽各是多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com