A
分析:设AC与⊙O相切于点D,连接OD,AO.在直角三角形ABC中,根据勾股定理,得BC=6,再证明BC=PC,所以可求∠BPC=45°.设⊙O的半径是r,根据三角形ABP的面积的两种表示方法,得2r+10r=12,解方程即可求解.
解答:
解:设AC与⊙O相切于点D,连接OD,AO,⊙O的半径是r,
∵∠C=90°,AC=8,AB=10,
∴BC=6,
∵PC=8-2=6,
∴BC=PC;
∴∠BPC=45°,
∴S
△APB=S
△APO+S
△AOB=S
△ABC-S
△BCP,
×2r+
×10r=
×6×8-
×6×6
2r+10r=12,
解得r=1.
故选A.
点评:熟练运用勾股定理,根据已知条件发现特殊直角三角形,运用三角形面积的不同表示方法列方程求解.