【题目】在ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC.
(1)求证:△BFO≌△DEO;
(2)若EF平分∠AEC,试判断四边形AFCE的形状,并证明.
【答案】四边形AFCE是正方形.
【解析】
试题分析:根据平行四边形的性质和平行线性质得出OA=OC,∠OAE=∠OCF,证△AOE≌△COF,推出OE=OF,即可得出四边形是矩形.
试题解析:(1)证明:∵四边形ABCD是平行四边形,
∴OB=OD,AD∥BC,AD=BC,
∴∠OBF=∠ODE,
在△BFO和△DEO中,,
∴△BFO≌△DEO(ASA);
(2)解:四边形AFCE是正方形;理由如下:
∵△BFO≌△DEO,
∴BF=DE,
∴CF=AE,
∵AD∥BC,
∴四边形AFCE是平行四边形,
又∵AF⊥BC,
∴∠AFC=90°,
∴四边形AFCE是矩形,
∵EF平分∠AEC,
∴∠AEF=∠CEF,
∵AD∥BC,
∴∠AEF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
∴四边形AFCE是正方形.
科目:初中数学 来源: 题型:
【题目】在圆的周长C=2πr中,常量与变量分别是( ).
A. 2是常量,C、π、r是变量 B. 2是常量,C、r是变量
C. C、2是常量,r是变量 D. 2是常量,C、r是变量
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+”表示成绩大于15秒.问:
﹣0.8 | +1 | ﹣1.2 | 0 | ﹣0.7 | +0.6 | ﹣0.4 | ﹣0.1 |
(1)这个小组男生的达标率为多少?( )
(2)这个小组男生的平均成绩是多少秒?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A点的坐标为(﹣1,5),B点的坐标为(3,3),C点的坐标为(5,3),D点的坐 标为(3,﹣1),小明发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明从家出发(记为原点0)向东走3m,他把数轴上+3的位置记为点A,他又东走了5m,记为点B,点B表示什么数?接着他又向西走了10m到点C,点C表示什么数?请你画出数轴,并在数轴上标出点A、点B的位置,这时如果小明要回家,则小明应如何走?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,长方形ABCD的边BC∥x轴.如果A点坐标是(1,2),C点坐标是(3,-2).
(1)求B点和D点的坐标;
(2)将这个长方形向下平移个单位长度,四个顶点的坐标变为多少?请你写出平移后四个顶点的坐标;
(3)如果Q点以每秒米的速度在长方形ABCD的边上从A出发到C点停止,沿着A→D→C的路径运动,那么当Q点的运动时间分别是1秒、4秒和6秒时,△BCQ的面积各是多少?请你分别求出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC.
(1)求证:△BDA≌△CEA;
(2)请判断△ADE是什么三角形,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com