精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=.设直线AC与直线x=4交于点E.

(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值.

(1)略
(2)
解:(1)点C的坐标.设抛物线的函数关系式为y=a(x–4)2+m,
,解得
∴所求抛物线的函数关系式为…………①
设直线AC的函数关系式为,解得
∴直线AC的函数关系式为,∴点E的坐标为
把x=4代入①式,得,∴此抛物线过E点.
(2)(1)中抛物线与x轴的另一个交点为N(8,0),设M(x,y),
过M作MG⊥x轴于G,
则S△CMN=S△MNG+S梯形MGBC—S△CBN=
=
=
∴当x=5时,S△CMN有最大值
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在由10个边长都为1的小正三角形的网格中,点是网格的一个顶点,以点为顶点作格点平行四边形(即顶点均在格点上的四边形),请你写出所有可能的平行四边形的对角线的长          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图17,在面积为4的平行四边形ABCD中,作一个面积为1的△ABP,使点P在平行四边形ABCD的边上(用直尺、圆规作图,保留作图痕迹,不要求写作法、证明),并写出满足条件的点P共有几个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题


如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC绕点P逆时针旋转180°拼接到△PFD的位置,构成新的图形(如图2).
思考发现:
判断图2中四边形ABEF的形状:         ;四边形ABEF的面积是          。(用含字母的代数式表示)
实践探究:
类比图2的剪拼方法,请你就图3(已知:AB∥DC)画出剪拼成一个平行四边形的示意图.

联想拓展:
小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
如图4,在梯形ABCD中,AD∥BC,E是CD的中点, EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积。

如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

小明量得家中的彩电屏幕的长为58厘米,宽为46厘米,你能判断这是一台多少英寸的电视机。(   )
A.9英寸(23厘米)B.21英寸(54厘米)C.29英寸(74厘米)D.34英寸(87厘米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如:平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.
(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有___;
(2)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);
(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE.

(1)求证:∠DAE=∠DCE;
(2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一活动菱形衣架中,菱形的边均为若墙上钉子间的距离    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图4,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1 A1、 A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数共有     个.

查看答案和解析>>

同步练习册答案