精英家教网 > 初中数学 > 题目详情
14.已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是(  )
A.3B.4C.8D.9

分析 设BD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠BDF=∠DEA=∠EFC=90°,解直角三角形即可得到结论.

解答 解:如图,设BD=x,
∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,
∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,
∴∠BDF=∠DEA=∠EFC=90°,
∴BF=2x,
∴CF=12-2x,
∴CE=2CF=24-4x,
∴AE=12-CE=4x-12,
∴AD=2AE=8x-24,
∵AD+BD=AB,
∴8x-24+x=12,
∴x=4,
∴AD=8x-24=32-24=8.
故选C.

点评 本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.解方程组
(1)$\left\{\begin{array}{l}{y=4x-3}\\{3x+2y=5}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x+3y=7}\\{3x+y=7}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.△ABC中,AB=12,AC=$\sqrt{39}$,∠B=30°,则△ABC的面积是21$\sqrt{3}$或15$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.
旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)
若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.志远要在报纸上刊登广告,一块10cm×5cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费(  )
A.540元B.1080元C.1620元D.1800元

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位后所得直线l′的函数关系式为y=$\frac{10}{9}$x-$\frac{10}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列各式变形正确的是(  )
A.$\frac{2}{2+a}$=$\frac{1}{1+a}$B.$\frac{a+1}{{a}^{2}+1}$=$\frac{1}{a+1}$C.$\frac{-x+y}{x-y}$=$\frac{x+y}{y-x}$D.$\frac{{a}^{2}-1}{a+1}$=a-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,点A的坐标为(0,m),且m≠0,点B的坐标为(n,0),将线段AB绕点B旋转90°,分别得到线段B P1,B P2,称点P1,P2为点A关于点B的“伴随点”,图1为点A关于点B的“伴随点”的示意图.

(1)已知点A(0,4),
①当点B的坐标分别为(1,0),(-2,0)时,点A关于点B的“伴随点”的坐标分别为(5,1),(-3,-1)和(2,-2),(-6,2);
②点(x,y)是点A关于点B的“伴随点”,直接写出y与x之间的关系式;
(2)如图2,点C的坐标为(-3,0),以C为圆心,$\sqrt{2}$为半径作圆,若在⊙C上存在点A关于点B的“伴随点”,直接写出点A的纵坐标m的取值范围.

查看答案和解析>>

同步练习册答案