精英家教网 > 初中数学 > 题目详情
7.如图,AB为⊙O的直径,AB=2,点在M在QO上,MC垂直平分OA,点N为直线AB上一动点(N不与A重合),若△MNP∽△MAC,PC与直线AB所夹锐角为α.
(1)若AM=AC,点N与点O重合,则α=30°;
(2)若点C、点N的位置如图所示,求α的度数;
(3)当直线PC与⊙O相切时,则MC的长为$\frac{4\sqrt{3}}{3}$.

分析 (1)根据AM=AC,MC垂直平分AO,OM=OA,可以求得△MAO的形状,然后根据点C在圆O上,AP是圆O的直径,从而可以求得α的值;
(2)根据AM=AC,MC垂直平分AO,OM=OA,可以求得△MAO的形状,△MNP∽△MAC,从而可以求得∠AMC和α的值,从而可以求得α的值;
(3)根据题意和图形,以及(2)中α的值,直线PC与⊙O相切.可以分别求得MD、DC的长,从而可以求得MC的长.

解答 解:(1)如右图一所示,
∵AM=AC,MC垂直平分AO,OM=OA,
∴MA=AC=MO=OA,
∵点M在圆O上,
∴点C在圆O上,
∵AP是圆O的直径,
∴∠ACP=90°,
∵AP=2AC,
∴∠APC=30°,
即α=30°,
故答案为:30;
(2)连接MO,如右图二所示
∵MC垂直平分AO,MO=AO,
∴MA=MO=AO,
∴∠MAO=60°,
∵△MNP∽△MAC,
∴$\frac{MA}{MN}=\frac{MC}{MP}$,∠AMC=∠NMP,
∴∠AMN=∠CMP,
∴△AMN∽△CMP,
∴∠MAN=∠MCP,
∵∠MAN=60°,
∴∠MCP=60°,
又∵∠CDB=90°,
∴α=90°-60°=30°;
(3)连接OE,如右图三所示,
∵AB=2,MC垂直平分AO,
∴AO=1,DO=$\frac{1}{2}$,MD=$\frac{\sqrt{3}}{2}$,
由(2)可得,α=30°,
∵OE=1,∠OEF=90°,
∴OF=2OE=2,
∴DF=$\frac{5}{2}$,
∴DC=DF•tanα=$\frac{5}{2}×\frac{\sqrt{3}}{3}$=$\frac{5\sqrt{3}}{6}$,
∴MC=MD+DC=$\frac{\sqrt{3}}{2}+\frac{5\sqrt{3}}{6}$=$\frac{4\sqrt{3}}{3}$,
故答案为:$\frac{4\sqrt{3}}{3}$.

点评 本题考查圆的综合题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,抛物线y=ax2+bx+c经过点A(-3,0)、B(1,0)、C(0,3).
(1)求抛物线的解析式;
(2)若点P为抛物线在第二象限上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知:$\sqrt{2}$cos(x+15°)=1,则sinx的值是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于点A(1,0),与y轴交于点B,其对称轴是x=-1,点C是y轴上一点,其纵坐标为m,连结AC,将线段AC绕点A顺时针旋转90°得到线段AD,以AC、AD为边作正方形ACED.
(1)用含m的代数式表示点D的横坐标为m+1.
(2)求该抛物线所对应的函数表达式.
(3)当点E落在抛物线y=ax2+bx+2上时,求此时m的值.
(4)令抛物线与x轴另一交点为点F,连结BF,直接写出正方形ACED的一边与BF平行时的m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,E是正方形ABCD内一点,E到点A、D、B的距离EA、ED、EB分别为1、3$\sqrt{2}$、2$\sqrt{5}$,延长AE交CD于点F,则四边形BCFE的面积为$\frac{109}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,AB为半圆O的直径,CD切⊙O于点E,AD、BC分别切⊙O于A、B两点,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°;⑥若切点E在半圆上运动(A、B两点除外),则线段AD与BC的积为定值.其中正确的个数是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(m+2)x和关于x的一元二次方程x2+x+m+1=0中m的值,若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,点B(3,6)在双曲线y=$\frac{k}{x}$(x>0)上,点D在双曲线y=-$\frac{8}{x}$(x<0)上,点A和点C分别在x轴和y轴上,且四边形ABCD是矩形,AB=2BC.
(1)求点B所在双曲线的解析式.
(2)求点A的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.现有五张完全相同的卡片,某同学在其中四张的正面分别写上了春节、清明节、端午节、重阳节这四个中国传统节日,在第五张的正面写上了国庆节,然后把卡片背面朝上洗匀,从中随机抽取一张卡片,则所抽取卡片正面所写节日是中国传统节日的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案