| A. | 3 | B. | -3 | C. | -1 | D. | 1 |
分析 首先把第一个式子两边化成底数都是2的幂的形式,把第二个式子两边化成底数都是3的幂的形式,然后根据指数相等,即可列方程组求得x和y的值,进而求得代数式的值.
解答 解:∵2x=4y+1,27y=3x-1,
∴2x=22(y+1),33y=3x-1,
∴$\left\{\begin{array}{l}{x=2(y+1)}\\{3y=x-1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$,
则x-y=4-1=3.
故选A.
点评 本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com