精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=﹣x2+2x.

(1)在给定的平面直角坐标系中,画出这个函数的图象

(2)根据图象,写出当y<0时,x的取值范围;

(3)若将此图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,请直接写出平移后图象所对应的函数关系式.

【答案】(1)见解析;(2) x<0或x>2;(3) y=(x+2)2(或y=﹣x2﹣4x﹣4).

【解析】

(1)确定出顶点坐标和与x轴的交点坐标,然后作出大致函数图象即可;

(2)根据函数图象写出二次函数图象在x轴下方的部分的x的取值范围;

(3)根据向左平移横坐标减,向下平移纵坐标减求出平移后的二次函数图象的顶点坐标,然后利用顶点式形式写出即可.

(1)函数图象如图所示;

(2)当y<0时,x的取值范围:x<0x>2;

(3)∵图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,

∴平移后的二次函数图象的顶点坐标为(﹣2,0),

∴平移后图象所对应的函数关系式为:y=(x+2)2.(或y=﹣x2﹣4x﹣4).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是(  )

A. 若点(3,6)在其图象上,则(﹣3,6)也在其图象上

B. k>0时,yx的增大而减小

C. 过图象上任一点Px轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k

D. 反比例函数的图象关于直线y=﹣x成轴对称

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,解一元一次方程,可以把它转化为两个一元一次方程来解,其实用“转化”的数学思想,我们还可以解一些新的方程,例如一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.

(1)方程x3+x2﹣2x=0的解是x1=0,x2=   ,x3=   

(2)用“转化”思想求方程=x的解.

(3)如图,已知矩形草坪ABCD的长AD=14m,宽AB=12m,小华把一根长为28m的绳子的一端固定在点B处,沿草坪边沿BA、AD走到点P处,把长绳PB段拉直并固定在点P处,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C处,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O是以AB为直径的ABC的外接圆,过点A作O的切线交OC的延长线于点D,交BC的延长线于点E.

(1)求证:DAC=DCE;

(2)若AB=2,sinD=,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)解方程::x2﹣6x﹣5=0; (2)解方程:2(x﹣1)2=3x﹣3;

(3)求抛物线的顶点坐标、对称轴和它与坐标轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯具有优异的光学、电学、 力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料. 其理论厚度仅 0.000 000 000 34 m,将这个数据用科学记数法表示为_______m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿BC的方向运动,且DE始终经过点A,EFAC交于M点.

(1)求证:△ABE∽△ECM;

(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;

(3)当线段BE为何值时,线段AM最短,最短是多少

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】沿图1长方形中的虚线平均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)2中的阴影部分的面积为 .

(2)观察图2,请你写出代数式(m+n)2(m-n)2mn之间的等量关系式.

(3)根据你得到的关系式解答下列问题:若x+y=-6,xy=5,xy= .

(4)实际上有许多代数恒等式可以用图形的面积来表示.如图3,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.

(1)直接写出小明所走路程s与时间t的函数关系式;

(2)小明出发多少时间与爸爸第三次相遇?

(3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程中停留的时间需作怎样的调整?

查看答案和解析>>

同步练习册答案