精英家教网 > 初中数学 > 题目详情

如图,在平行四边形ABCD中E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N,对于下列结论:①△ABM≌△CDN;②AM=数学公式AC;③DN=2NF;④S△AMB=数学公式S△ABC.其中正确的结论有


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
C
分析:关键是证明四边形BFDE是平行四边形?BE∥DF,就可以利用平行线等分线段定理或利用相似推出其他结论了.
解答:在?ABCD中,AD∥BC,AD=BC,
又E、F分别是边AD、BC的中点,
∴BF∥DE,BF=DE,
∴四边形BFDE是平行四边形,
∴BE∥DF,
∴∠AMB=∠ANF=∠DNC,
∵∠BAM=∠DCN,AB=CD,
∴△ABM≌△CDN;
E是AD的中点,BE∥DF,
∴M是AN的中点,
同理N是CM的中点,
∴AM=AC;
DN=BM=2NF;
S△AMB=S△ABC不成立.
故选C.
点评:本题主要考查了平行四边形的性质和三角形全等的判定,还考查了平行线等分线段定理等,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF、GH相交于点O,则图中共有
9
个平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,证明:四边形DFBE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD精英家教网的延长线交于点P,FP交AD于点Q.设运动时间为x秒,线段PC的长为y厘米.
(1)求y与x之间函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,PF⊥AD?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,AB=2
2
AO=
3
OB=
5
,则下列结论中不正确的是(  )
A、AC⊥BD
B、四边形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•同安区一模)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为
4cm
4cm

查看答案和解析>>

同步练习册答案