【题目】以下两个问题,任选其一作答.
如图,OD是∠AOC的平分线,OE是∠BOC的平分线.
问题一:若∠AOC=36°,∠BOC=136°,求∠DOE的度数.
问题二:若∠AOB=100°,求∠DOE的度数.
科目:初中数学 来源: 题型:
【题目】如图所示,直线EF与直线AB、CD相交于点M和点N,MG、NH分别平分∠AMN和∠MND,并且∠1=∠2,由这些条件能得出AB平行于CD吗?能得出MG平行于NH吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线与轴交于A,B(点A在点B的右边),与轴交于点C.过A,C两点作直线,P是抛物线上的动点,过P作PD⊥轴,垂足为D,交直线于点E.设点P的横坐标为.
(1)求直线的函数表达式;
(2)问是否存在点P,使O,E,C,P四点能构成平行四边形,若存在,请求出的值;若不存在,请说明理由.
(3)如图2,过A点作直线⊥,连接OE,作△AOE的外接圆,交直线于点F,连接OF,EF.当△EOF的面积最小时,求点P的坐标和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,l1∥l2 , C1在l1上,并且C1A⊥l2 , A为垂足,C2 , C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1 , △ABC2的面积为S2 , △ABC3的面积为S3 , 小颖认为S1=S2=S3 , 请帮小颖说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列运算正确的是( )
A.a﹣(b﹣c)=a﹣b﹣c
B.a﹣(b﹣c)=a+b﹣c
C.a﹣(b﹣c)=a+b+c
D.a﹣(b﹣c)=a﹣b+c
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com