【题目】如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=_______.
【答案】
【解析】∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,
∴∠DBC=∠ABC,∠DCB=∠ACB,
∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,
∴∠MBC+∠NCB=360°-60°=300°,
∵BE、CE分别平分∠MBC、∠BCN,
∴∠5+∠6=∠MBC,∠1=∠NCB,
∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,
∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,
∵BF、CF分别平分∠EBC、∠ECQ,
∴∠5=∠6,∠2=∠3+∠4,
∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,
即∠2=∠5+∠F,2∠2=2∠5+∠E,
∴2∠F=∠E,
∴∠F=∠E=×30°=15°.
故答案是:15°.
科目:初中数学 来源: 题型:
【题目】已知实数x,y满足|5﹣x|+(y﹣11)2=0,则以x,y的值为两边长的等腰三角形腰长是( )
A.5B.11C.5或 11D.以上答案均不对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=10,AD=6,点M为AB上的一动点,将矩形ABCD沿某一直线对折,使点C与点M重合,该直线与AB(或BC)、CD(或DA)分别交于点P、Q
(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹)
(2)如果PQ与AB、CD都相交,试判断△MPQ的形状并证明你的结论;
(3)设AM=x,d为点M到直线PQ的距离,,①求y关于x的函数解析式,并指出x的取值范围;
②当直线PQ恰好通过点D时,求点M到直线PQ的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若点A(x1 , y1)和点B(x2 , y2)在正比例函数y=-3x的图象上,当x1<x2时,y1与y2的大小关系为( )
A.y1>y2
B.y1<y2
C.y1=y2
D.y1与y2的大小不一定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com