精英家教网 > 初中数学 > 题目详情

【题目】如图,P点的坐标为(3,2),过P点的直线AB分别交x轴和y轴的正半轴于A,B两点,作PM⊥x轴于M点,作PN⊥y轴于N点,若△PAM的面积与△PBN的面积的比为 ,则直线AB的解析式为

【答案】y=﹣x+5
【解析】解:∵PM⊥x轴,PN⊥y中,x轴⊥y轴,
∴∠BNP=∠PMA=90°,PN∥x轴,
∴∠BPN=∠PAO,
∴△PMA∽△BNP,
∵△PAM的面积与△PBN的面积的比为
∴( 2=( 2=
∵P(3,2),
∴PN=3,PM=2,
∴AM=2,BN=3,
∴A(5,0),B(0,5),
设直线AB的解析式为y=kx+b,
把A、B的坐标代入得:
解得:k=﹣1,b=5,
即直线AB的解析式为y=﹣x+5,
所以答案是:y=﹣x+5.
【考点精析】关于本题考查的确定一次函数的表达式,需要了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,记m=|a﹣b+c|+|2a+b+c|,n=|a+b+c|+|2a﹣b﹣c|.则下列选项正确的是(  )
A.m<n
B.m>n
C.m=n
D.m、n的大小关系不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).

(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明;
(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.
(1)证明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度数;
(3)设DE交AB于点G,若DF=4,cosB= ,E是 的中点,求EGED的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进了A,B两种家用电器,相关信息如下表:

家用电器

进价(元/件)

售价(元/件)

A

m+200

1800

B

m

1700

已知用6000元购进的A种电器件数与用5000元购进的B种电器件数相同.
(1)求表中m的值.
(2)由于A,B两种家用电器热销,该商店计划用不超过23000元的资金再购进A,B两种电器总件数共20件,且获利不少于13300元.请问:有几种进货方案?哪一种方案才能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据问题进行计算:
(1)计算:(x+3)(x﹣3)﹣x(x﹣2)
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD中,AD∥BC,∠B=∠C=60°,P、Q同时从B出发,以每秒1单位长度分别沿B﹣A﹣D﹣C和B﹣C﹣D方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平方单位),S与t的函数图象如图2所示,则下列结论错误的个数( )
①当t=4秒时,S=4 ②AD=4
③当4≤t≤8时,S=2 t ④当t=9秒时,BP平分四边形ABCD的面积.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(1,5),B(4,2),点P在x轴上,当AP+BP最小时,点P的坐标为

查看答案和解析>>

同步练习册答案