分析 (1)根据题意得方程求解即可;
(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(30-2x)=-2x2+30x,根据二次函数的性质求解即可;
(3)由题意得不等式,即可得到结论.
解答 解:(1)根据题意知平行于墙的一边的长为(30-2x)米,
则有:x(30-2x)=100,
解得:x=5或x=10,
∵0<30-2x≤16,
∴7≤x<15,
故x=10;
(2)设苗圃园的面积为y,
∴y=x(30-2x)=-2x2+30x,
∵a=-2<0,
∴苗圃园的面积y有最大值,
∵30-2x≥10,
解得:x≤10,
∴7≤x≤10,
∴当x=$\frac{15}{2}$时,即平行于墙的一边长15>10米,y最大=112.5平方米;
当x=10时,y最小=100;
(3)由题意得-2x2+30x≥88,
解得:x≤4或x≥11,
又∵7≤x<15,
∴11≤x<15.
点评 此题考查了二次函数、一元二次方程、一元二次不等式的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com