精英家教网 > 初中数学 > 题目详情
15、已知:如图,AB=AC,BD⊥AC,垂足为点D.已知∠A=40°,则∠DBC=
20°
分析:根据等腰三角形的性质、三角形内角和定理先求出∠C的度数,再根据互余的概念:和为90度的两个角互为余角,求出∠DBC的度数.
解答:解:∵AB=AC,∠A=40°,
∴∠C=(180°-40°)÷2=70°,
∵BD⊥AC,
∴∠BDC=90°,
∴∠DBC=90°-∠C=20°.
故填20°.
点评:本题综合考查了等腰三角形的性质、三角形内角和定理及利用垂直的定义,互余的性质计算,要注意领会由垂直得直角这一要点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB,CD相交于点O,且OA•OD=OB•OC,求证:AC∥DB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
(1)求证:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、已知,如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB=AC,DB=DC,求证:∠B=∠C.

查看答案和解析>>

同步练习册答案