精英家教网 > 初中数学 > 题目详情
11.如图,以△ABC的三边AB、BC、CA分别为边,在BC的同侧作等边三角形ABD,BCE,CAF,求证:四边形ADEF是平行四边形.

分析 由△ABD,△EBC都是等边三角形,易证得△DBE≌△ABC(SAS),则可得DE=AC,又由△ACF是等边三角形,即可得DE=AF,同理可证得AD=EF,即可判定四边形ADEF是平行四边形.

解答 证明:∵△ABD,△EBC都是等边三角形.
∴AD=BD=AB,BC=BE=EC
∠DBA=∠EBC=60°
∴∠DBE+∠EBA=∠ABC+∠EBA.
∴∠DBE=∠ABC.
在△DBE和△ABC中,
$\left\{\begin{array}{l}{BD=BA}\\{∠DBE=∠ABC}\\{BE=BC}\end{array}\right.$,
∴△DBE≌△ABC(SAS).
∴DE=AC.
又∵△ACF是等边三角形,
∴AC=AF.
∴DE=AF.
同理可证:AD=EF,
∴四边形ADEF是平行四边形.

点评 此题考查了平行四边形的判定、等边三角形的判定与性质以及全等三角形的判定与性质.注意证得△DBE≌△ABC≌△FEC是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.有下列说法:
①平行四边形具有四边形的所以性质
②平行四边形是中心对称图形
③平行四边形的对边相等
④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形
其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.我市城市绿化工程招标,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若又甲队先做20天,再由甲、乙合作12天,共完成总工作量的三分之二.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工1天需付工程款3.5万元,乙队施工一天需付工程款2万元,该工程由甲乙两队合作若干天后,再由乙队完成剩余工作,若要求完成此项工程的工程款不超过186万元,求甲、乙两队最多合作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,P,Q分别是双曲线y=$\frac{k}{x}$在第一、三象限上的点,PA⊥x轴,QB⊥y轴,垂足分别为A,B,点C是PQ与x轴的交点.设△PAB的面积为S1,△QAB的面积为S2,△QAC的面积为S3,则有(  )
A.S1=S2≠S3B.S1=S3≠S2C.S2=S3≠S1D.S1=S2=S3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为(  )
A.3.71×107B.0.371×107C.3.71×106D.37.1×106

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在?ABCD中,AB=6,AD=10,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AG=2.5,则△CEF的周长为$\frac{34}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm,点P从点B出发,沿BA方向匀速运动,速度为1cm/s,同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:
(1)当t为何值时,四边形APFD是平行四边形?
(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;并求出当t取何值时,y取得最大值?
(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?求出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若关于x的一元二次方程(a-1)x2-x+1=0有实数根,则a的取值范围为a≤$\frac{5}{4}$且a≠1.

查看答案和解析>>

同步练习册答案