分析 由△ABD,△EBC都是等边三角形,易证得△DBE≌△ABC(SAS),则可得DE=AC,又由△ACF是等边三角形,即可得DE=AF,同理可证得AD=EF,即可判定四边形ADEF是平行四边形.
解答 证明:∵△ABD,△EBC都是等边三角形.
∴AD=BD=AB,BC=BE=EC
∠DBA=∠EBC=60°
∴∠DBE+∠EBA=∠ABC+∠EBA.
∴∠DBE=∠ABC.
在△DBE和△ABC中,
$\left\{\begin{array}{l}{BD=BA}\\{∠DBE=∠ABC}\\{BE=BC}\end{array}\right.$,
∴△DBE≌△ABC(SAS).
∴DE=AC.
又∵△ACF是等边三角形,
∴AC=AF.
∴DE=AF.
同理可证:AD=EF,
∴四边形ADEF是平行四边形.
点评 此题考查了平行四边形的判定、等边三角形的判定与性质以及全等三角形的判定与性质.注意证得△DBE≌△ABC≌△FEC是关键.
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | S1=S2≠S3 | B. | S1=S3≠S2 | C. | S2=S3≠S1 | D. | S1=S2=S3 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3.71×107 | B. | 0.371×107 | C. | 3.71×106 | D. | 37.1×106 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com