分析 用每件的利润乘以销售量即可得到每周销售利润,即y=(x-40)[300-10(x-60)],再把解析式整理为一般式,然后根据二次函数的性质确定销售单价定为多少元时,每周的销售利润最大.
解答 解:根据题意得y=(x-40)[300-10(x-60)]
=-10x2+1300x-36000,
∵x-60≥0且300-10(x-60)≥0,
∴60≤x≤90,
∵a=-10<0,
而抛物线的对称轴为直线x=65,即当x>65时,y随x的增大而减小,
而60≤x≤90,
∴当x=65时,y的值最大,
即销售单价定为65元时,每周的销售利润最大.
点评 本题考查了二次函数的应用:利用二次函数解决利润问题,在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a(x1-x2)=d | B. | a(x2-x1)=d | C. | a(x1-x2)2=d | D. | a(x1+x2)2=d |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x6÷x2=x3 | B. | (-x)-1=$\frac{1}{x}$ | C. | (2x3)2=4x6 | D. | -2a2•a3=-2a6 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -2<m<$\frac{1}{8}$ | B. | -3<m<-$\frac{7}{4}$ | C. | -3<m<-2 | D. | -3<m<-$\frac{15}{8}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com