精英家教网 > 初中数学 > 题目详情

如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作A作业宝G∥BD,交CB的延长线于点G.
(1)求证:四边形DEBF是菱形;
(2)请判断四边形AGBD是什么特殊四边形?并加以证明.

(1)证明:∵四边形ABCD是平行四边形
∴AB∥CD且AB=CD,AD∥BC且AD=BC
E,F分别为AB,CD的中点,
∴BE=AB,DF=CD,
∴四边形DEBF是平行四边形
在△ABD中,E是AB的中点,
∴AE=BE=AB=AD,
而∠DAB=60°
∴△AED是等边三角形,即DE=AE=AD,
故DE=BE
∴平行四边形DEBF是菱形.

(2)解:四边形AGBD是矩形,理由如下:
∵AD∥BC且AG∥DB
∴四边形AGBD是平行四边形
由(1)的证明知AD=DE=AE=BE,
∴∠ADE=∠DEA=60°,
∠EDB=∠DBE=30°
故∠ADB=90°
∴平行四边形AGBD是矩形.
分析:(1)利用平行四边形的性质证得△AED是等边三角形,从而证得DE=BE,问题得证;
(2)利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形.
点评:本题考查了矩形的性质、等边三角形的判定及性质、三角形中位线定理等知识,解题的关键是弄清菱形及矩形的判定方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF、GH相交于点O,则图中共有
9
个平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,证明:四边形DFBE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD精英家教网的延长线交于点P,FP交AD于点Q.设运动时间为x秒,线段PC的长为y厘米.
(1)求y与x之间函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,PF⊥AD?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,AB=2
2
AO=
3
OB=
5
,则下列结论中不正确的是(  )
A、AC⊥BD
B、四边形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•同安区一模)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为
4cm
4cm

查看答案和解析>>

同步练习册答案