11£®ÒÑ֪ijµÀÅжÏÌâµÄÎå¸öÑ¡ÏîÖÐÓÐÁ½¸öÕýÈ·´ð°¸£¬¸ÃÌâÂú·ÖΪ4·Ö£¬µÃ·Ö¹æÔòÊÇ£ºÑ¡³öÁ½¸öÕýÈ·´ð°¸ÇÒûÓÐÑ¡´íÎó´ð°¸µÃ4·Ö£»Ö»Ñ¡³öÒ»¸öÕýÈ·´ð°¸ÇÒûÓÐÑ¡´íÎó´ð°¸µÃ2·Ö£»²»Ñ¡»òËùÑ¡´ð°¸ÖÐÓдíÎó´ð°¸µÃ0·Ö£®
£¨1£©ÈÎѡһ¸ö´ð°¸£¬µÃµ½2·ÖµÄ¸ÅÂÊÊÇ$\frac{2}{5}$£»
£¨2£©ÇëÀûÓÃÊ÷״ͼ»ò±í¸ñÇóÈÎÑ¡Á½¸ö´ð°¸£¬µÃµ½4·ÖµÄ¸ÅÂÊ£»
£¨3£©Èç¹ûСÃ÷Ö»ÄÜÈ·ÈÏÆäÖÐÒ»¸ö´ð°¸ÊÇÕýÈ·µÄ£¬´ËʱµÄ×î¼Ñ´ðÌâ²ßÂÔÊÇA
A£®Ö»Ñ¡È·ÈϵÄÄÇÒ»¸öÕýÈ·´ð°¸
B£®³ýÁËÑ¡ÔñÈ·ÈϵÄÄÇÒ»¸öÕýÈ·´ð°¸£¬ÔÙÈÎѡһ¸ö
C£®¸É´à¿Õ×Ŷ¼²»Ñ¡ÁË£®

·ÖÎö £¨1£©Ö±½Ó¸ù¾Ý¸ÅÂʹ«Ê½¼ÆË㣻
£¨2£©²»·ÁÉèÎå¸öÑ¡Ïî·Ö±ðΪA¡¢B¡¢C¡¢D¡¢E£¬ÆäÖÐA¡¢BΪÕýÈ·Ñ¡ÏÔÙÁбíչʾËùÓÐ20ÖֵȿÉÄܵĽá¹ûÊý£¬ÕÒ³öABËùÕ¼½á¹ûÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½Çó½â£»
£¨3£©Ò×µÃֻѡȷÈϵÄÄÇÒ»¸öÕýÈ·´ð°¸¿ÉµÃ2·Ö£¬ÔÙ¼ÆËã³ýÁËÑ¡ÔñÈ·ÈϵÄÄÇÒ»¸öÕýÈ·´ð°¸£¬ÔÙÈÎÒâÑ¡ÔñʣϵÄËĸöÑ¡ÏîÖеÄÒ»¸öËùµÃµÄ·ÖÊý£¬È»ºó±È½ÏÁ½¸öµÄµÃ·ÖºóÈ·¶¨×î¼Ñ´ðÌâ²ßÂÔ£®

½â´ð ½â£º£¨1£©Îå¸öÑ¡ÏîÖÐÓÐÁ½¸öÕýÈ·´ð°¸£¬ÈÎѡһ¸ö´ð°¸£¬Ñ¡¶ÔÕýÈ·´ð°¸µÄ¸ÅÂÊ=$\frac{2}{5}$£»
£¨2£©²»·ÁÉèÎå¸öÑ¡Ïî·Ö±ðΪA¡¢B¡¢C¡¢D¡¢E£¬ÆäÖÐA¡¢BΪÕýÈ·Ñ¡Ïî
ÁбíÈçÏ£º
¹²ÓÐ20ÖֵȿÉÄܵĽá¹ûÊý£¬ÆäÖÐABÕ¼2¸ö½á¹ûÊý£¬
ËùÒÔµÃ4·ÖµÄ¸ÅÂÊ=$\frac{2}{20}$=$\frac{1}{10}$£»
£¨3£©Ö»Ñ¡È·ÈϵÄÄÇÒ»¸öÕýÈ·´ð°¸£¬Ôò¿ÉµÃ2·Ö£»
Èô³ýÁËÑ¡ÔñÈ·ÈϵÄÕýÈ·´ð°¸A£¬ÔÙ´ÓB¡¢C¡¢D¡¢EÖÐÈÎÒâÑ¡ÔñʣϵÄËĸöÑ¡ÏîÖеÄÒ»¸ö£¬
ÔòÔÙÑ¡ÕýÈ·´ð°¸µÄ¸ÅÂÊΪ$\frac{1}{4}$£¬Ñ¡´íÎó´ð°¸µÄ¸ÅÂÊΪ$\frac{3}{4}$£¬
ËùÒÔ´ËʱµÃ·Ö=4¡Á$\frac{1}{4}$+0¡Á$\frac{3}{4}$=1£¬
ËùÒÔ´ËʱµÄ×î¼Ñ´ðÌâ²ßÂÔÊÇֻѡȷÈϵÄÄÇÒ»¸öÕýÈ·´ð°¸£®
¹Ê´ð°¸ÎªA£®

µãÆÀ ±¾Ì⿼²éÁËÁÐ±í·¨ÓëÊ÷״ͼ·¨£ºÀûÓÃÁÐ±í·¨»òÊ÷״ͼչʾËùÓпÉÄܵĽá¹ûÇó³ön£¬ÔÙ´ÓÖÐÑ¡³ö·ûºÏʼþA»òBµÄ½á¹ûÊýÄ¿m£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½¼ÆËãʼþAÓëBµÄ¸ÅÂÊ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®½«2¡¢3¡¢4¡¢5¡¢6¡¢7¡¢8ÕâÆß¸öÊý·Ö±ðÌîÈëͼÖÐµÄÆß¸öСԲÖУ¬Ê¹ºá¡¢Êú¼°ÄÚ¡¢ÍâÁ½¸öԲȦÉϵÄ4¸öÊýÖ®ºÍ¶¼ÏàµÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¹ØÓÚxµÄ²»µÈʽ×é$\left\{\begin{array}{l}{2x+1£¾3}\\{a-x£¾1}\end{array}\right.$£®
£¨1£©Èô²»µÈʽ×éµÄ½â¼¯ÊÇ1£¼x£¼2£¬ÇóaµÄÖµ£»
£¨2£©Èô²»µÈʽ×éÎ޽⣬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁи÷ʽÖнá¹ûΪ¸ºÊýµÄÊÇ£¨¡¡¡¡£©
A£®|-6|B£®£¨-6£©2C£®£¨-6£©3D£®-£¨-6£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èç¹û|x|=|y|=2£¬xy£¼0£¬ÄÇôx+yµÄÖµÊÇ£¨¡¡¡¡£©
A£®5»ò-5B£®1»ò-1C£®5»ò1D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Í¬Ñ§ÃǶ¼ÖªµÀ£¬|5-£¨-2£©|±íʾ5Óë-2Ö®²îµÄ¾ø¶ÔÖµ£¬Êµ¼ÊÉÏÒ²¿ÉÀí½âΪ5Óë-2Á½ÊýÔÚÊýÖáÉÏËù¶ÔµÄÁ½µãÖ®¼äµÄ¾àÀ룮ÊÔ̽Ë÷£º
£¨1£©Çó|5-£¨-2£©|=7£®
£¨2£©ÎÒÃÇÖªµÀ|x+2|Óë|x-£¨-2£©|µÄÖµÊÇÏàµÈµÄ£¬Æä½á¹û¿ÉÀí½âΪxÓë-2Á½ÊýÔÚÊýÖáÉÏËù¶ÔµÄÁ½µãÖ®¼äµÄ¾àÀ룮
£¨3£©ÕÒ³öËùÓзûºÏÌõ¼þµÄÕûÊýx£¬Ê¹|x+5|+|x-2|=7£¬ÕâÑùµÄÕûÊýÓÐ8 ¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÓÃÊʵ±µÄ·½·¨½â·½³Ì£º
£¨1£©£¨x-3£©2=2x£¨x-3£©=0    
£¨2£©3x2-6x+1=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®»Ø´ðÏÂÃæµÄÀýÌ⣺
½â·½³Ì£ºx2-|x|-2=0£®
½â£º£¨1£©µ±x¡Ý0ʱ£¬Ô­·½³Ì»¯Îªx2-x-2=0£¬½âµÃx1=2£¬x2=-1£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£®
       £¨2£©µ±x£¼0ʱ£¬Ô­·½³Ì»¯Îªx2+x-2=0£¬½âµÃx1=-2£¬x2=1£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£®
¡àÔ­·½³ÌµÄ¸ùÊÇx1=2£¬x2=-2£®
Çë²ÎÕÕÀýÌâ½â·½³Ìx2+|x-4|-8=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªPÊǵȱߡ÷ABCÄÚÒ»µã£¬ÈôPA=3£¬PB=5£¬PC=4£¬Ôò¡÷ABCµÄÃæ»ý=$\frac{36+25\sqrt{3}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸