精英家教网 > 初中数学 > 题目详情
伽菲尔德( Garfield,1881年任美国第20届总统)利用“三个直角三角形的面积和等于一个直角梯形的面积”(如图所示)证明了勾股定理,请你应用此图证明勾股定理.
分析:以a,b长为上下底边,以a+b长为高,作梯形ABDE,即AB⊥BD,ED⊥BD,AB=a,ED=b,在其高BD上再取一点C,使BC=b,连结AC,EC,求出△ACE是等腰直角三角形,根据梯形面积公式求出梯形面积,根据三角形面积公式求出梯形面积,即可得出等式,即可得出答案.
解答:证明:如图,以a,b长为上下底边,以a+b长为高,作梯形ABDE,
即AB⊥BD,ED⊥BD,AB=a,ED=b,在其高BD上再取一点C,使BC=b,连结AC,EC,
在△ABC和△CDE中,
AB=CD
∠B=∠D
BC=DE

∴△ABC≌△CDE(SAS),
∴AC=CE,∠BAC=∠DCE,
∴∠ACB+∠DCE=∠ACB+∠BAC=90°,
∴∠ACE=180°-(∠ACB+∠DCE)=180°-90°=90°,
∴△ACE为等腰直角三角形,设AC=c,
由梯形ABDE的面积公式得:SABDE=
1
2
(AB+ED)?BD=
1
2
(a+b)(a+b)=
1
2
(a+b)2

梯形ABDE可分成如图所示的三个直角三角形,其面积又可以表示成:S△ABC+S△CDE+S△ACE=
1
2
ab+
1
2
ab+
1
2
c2

1
2
(a+b)2=
1
2
ab+
1
2
ab+
1
2
c2

∴a2+b2=c2
即在直角△ABC中有a2+b2=c2(勾股定理).
点评:本题考查了梯形面积,等腰直角三角形的性质和判定,三角形面积,全等三角形的性质和判定的应用,关键是能构造出能证出勾股定理的图形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如图1是一个重要公式的几何解释.请你写出这个公式;
(2)如图2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试证明∠ACE=90°;
(3)伽菲尔德(Garfield,1881年任美国第20届总统)利用(1)中的精英家教网公式和图2证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1是一个重要公式的几何解释,请你写出这个公式
(a+b)2=a2+2ab+b2
(a+b)2=a2+2ab+b2
;在推得这个公式的过程中,主要运用了
C
C

A.分类讨论思想     B.整体思想     C.数形结合思想      D.转化思想
(2)如图2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D在同一直线上.
求证:∠ACE=90°;
(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你尝试该证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•南浔区模拟)利用图中图形的有关面积的等量关系都能证明数学中一个十分著名的定理,此证明方法就是美国第二十任总统伽菲尔德最先完成的,人们为了纪念他,把这一证法称为“总统”证法.这个定理称为
勾股定理
勾股定理
,该定理的结论其数学表达式是
a2+b2=c2
a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为
1
2
ab+(a-b)2
由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.

(2)试用勾股定理解决以下问题:
如果直角三角形ABC的两直角边长为3和4,则斜边上的高为
12
5
12
5

(3)试构造一个图形,使它的面积能够解释(a-2b)2=a2-4ab+4b2,画在下面的网格中,并标出字母a、b所表示的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:

教材第66页探索平方差公式时设置了如下情境:边长为b的小正方形纸片放置在边长为a的大正方形纸片上(如图①),你能通过计算未盖住部分的面积得到公式(a+b)(a-b)=a2-b2吗?(不必证明)

(1)如果将小正方形的一边延长(如图②),是否也能推导公式?请完成证明.
(2)面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图③,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×
12
ab+(a-b)2,由此推导出重要的勾股定理:a2+b2=c2.图④为美国第二十任总统伽菲尔德的“总统证法”,请你完成证明.
(3)试构造一个图形,使它的面积能够解释(a-2b)2=a2-4ab+4b2,画在下面的网格(图⑤)中,并标出字母a、b所表示的线段.

查看答案和解析>>

同步练习册答案