精英家教网 > 初中数学 > 题目详情
17、如图,请在下列四个条件:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°中,选出两个,推出四边形ABCD是平行四边形:
①③(或①④,②④,③④)
.(只要写出正确的一种即可)
分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.其中解法一是证明两组对角相等的四边形是平行四边形;解法二是证明两组对边平行的四边形是平行四边形;解法三是证明一组对边平行且相等的四边形是平行四边形;解法四是证明两组对角相等的四边形是平行四边形.
解答:解:①③,①④,②④,③④.
证明:(1)①③
∵AD∥BC
∴∠A+∠B=180°,∠C+∠D=180°
∵∠A=∠C
∴∠B=∠D
∴四边形ABCD是平行四边形;
(2)①④
∵∠B+∠C=180°
∴AB∥CD
又∵AD∥BC
∴四边形ABCD是平行四边形;
(3)②④
∵∠B+∠C=180°
∴AB∥CD
又∵AB=CD
∴四边形ABCD是平行四边形;
(4)③④
∵∠B+∠C=180°
∴AB∥CD
∴∠A+∠D=180°
又∵∠A=∠C
∴∠B=∠D
∴四边形ABCD是平行四边形.
故答案为①③,①④,②④,③④.
点评:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•池州一模)我们知道:由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分(如图1).
探索下列问题:
(1)在如图2给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2
①请你在如图3中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接);
②请你在如图4中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接).
(3)是否存在一条直线,将一个任意的平面图形(如图5)分割成面积相等的两部分?请简略说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列四个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.
供选择的四个条件(请从其中选择一个):
①AB=ED;      ②∠A=∠D=90°;
③∠ACB=∠DFE;④∠A=∠D.

查看答案和解析>>

科目:初中数学 来源:新教材完全解读 七年级数学 (下册) (配人教版新课标) (第1次修订版) 配人教版新课标 题型:044

图形的操作过程如图所示(本题中四个矩形水平方向的长均为a,竖直方向的长均为b):

在图①中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分).

在图②中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).

请回答下列问题:

(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;

(2)请分别写出上述三个图形中除去阴影部分的剩余部分的面积:

S1=________;S2=________;S3=________;

(3)联想与探索:

如图④所示,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少,并说明你的猜想是正确的.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列四个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.  供选择的四个条件(请从其中选择一个):

①AB=ED;      ②

③∠ACB=∠DFE;④

 


查看答案和解析>>

科目:初中数学 来源:2013年安徽省池州市中考数学一模试卷(解析版) 题型:解答题

我们知道:由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分(如图1).
探索下列问题:
(1)在如图2给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2
①请你在如图3中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接);
②请你在如图4中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接).
(3)是否存在一条直线,将一个任意的平面图形(如图5)分割成面积相等的两部分?请简略说出理由.

查看答案和解析>>

同步练习册答案