精英家教网 > 初中数学 > 题目详情
已知关于x的方程①x2-(1-2a)x+a2-3=0有两个不相等的实数根,且关于x的方程②x2-2x+2a-1=0没有实数根,问a取什么整数时,方程①有整数根.
分析:若一元二次方程有两不等根,则根的判别式△=b2-4ac>0,建立关于a的不等式,求出a的取值范围;
关于x的方程②x2-2x+2a-1=0没有实数根,则根的判别式△=b2-4ac<0,建立关于a的不等式,求出a的取值范围;
解关于a的不等式组,再求a的范围.
解答:解:∵方程①有两个不相等的实数根,
∴△=b2-4ac=[-(1-2a)]2-4×(a2-3)=13-4a>0,
解得:a<
13
4

又∵方程②没有实数根,
∴△=b2-4ac=(-2)2-4×1×(2a-1)=8-8a<0,
解得:a>1,
∴a取的整数值有2,3,
当a=2时,方程①变为x2+3x+1=0,无整数实根;
当a=3时,方程②变为x2+5x+6=0,有整数实根.
点评:总结:一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并直接写出以这两根为直角边的直角三角形外接圆半径的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程m(x-1)=4x-m的解是-4,求m2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程4x-3m=2的解是x=m,则m=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程|x|=ax-a有正根且没有负根,则a的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程3x2-4x•sinα+2(1-cosα)=0有两个不相等的实数根,α为锐角,那么α的取值范围是
 

查看答案和解析>>

同步练习册答案