精英家教网 > 初中数学 > 题目详情

将下图中的各图中的点按照其旁边的数字从小到大用线段连接,并说明连出的是什么图形.

答案:
解析:

图略,图形为字母MZ


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

32、观察并探求下列各问题,写出你所观察得到的结论,并说明理由.
(1)如图,△ABC中,P为边BC上一点,试观察比较BP+PC与AB+AC的大小,并说明理由.

(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.

(3)将(2)中点P变为两个点P1、P2得下图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.

(4)将(3)中的点P1、P2移至△ABC外,并使点P1、P2与点A在边BC的异侧,且∠P1BC<∠ABC,∠P2CB<∠ACB,得图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.

(5)若将(3)中的四边形BP1P2C的顶点B、C移至△ABC内,得四边形B1P1P2C1,如图⑤,试观察比较四边形B1P1P2C1的周长与△ABC的周长的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•常州)用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S=
1
2
a+b-1(史称“皮克公式”).
小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:

根据图中提供的信息填表:
  格点多边形各边上的格点的个数 格点边多边形内部的格点个数 格点多边形的面积
多边形1 8 1  
多边形2 7 3  
一般格点多边形 a b S
则S与a、b之间的关系为S=
a+2(b-1)
a+2(b-1)
(用含a、b的代数式表示).

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(江苏常州卷)数学(解析版) 题型:解答题

用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则(史称“皮克公式”).

小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点

中的两个多边形:

根据图中提供的信息填表:

 

格点多边形各边上的格点的个数

格点边多边形内部的格点个数

格点多边形的面积

多边形1

8

1

 

多边形2

7

3

 

一般格点多边形

a

b

S

则S与a、b之间的关系为S=      (用含a、b的代数式表示).

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

观察并探求下列各问题,写出你所观察得到的结论,并说明理由.
(1)如图,△ABC中,P为边BC上一点,试观察比较BP+PC与AB+AC的大小,并说明理由.

(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.

(3)将(2)中点P变为两个点P1、P2得下图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.

(4)将(3)中的点P1、P2移至△ABC外,并使点P1、P2与点A在边BC的异侧,且∠P1BC<∠ABC,∠P2CB<∠ACB,得图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.

(5)若将(3)中的四边形BP1P2C的顶点B、C移至△ABC内,得四边形B1P1P2C1,如图⑤,试观察比较四边形B1P1P2C1的周长与△ABC的周长的大小,并说明理由.

查看答案和解析>>

同步练习册答案