精英家教网 > 初中数学 > 题目详情
17.如图,在 Rt△ABC中,∠B=90°,AB=8,BC=4,AC的垂直平分线交AB于点M,交AC于N,则BM的值为3.

分析 利用中垂线的性质和勾股定理即可求解.

解答 解:连接CM,
∵MN垂直平分AC,
∴AM=CM,
∵BC2+BM2=CM2
∴42+BM2=(8-BM)2
∴BM=3,
故答案为:3.

点评 本题考查了线段垂直平分线 性质,勾股定理,熟练掌握线段垂直平分线的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.为传播奥运知识,小刚就本班学生对奥运知识的了解程度进行了一次调查统计:A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
(1)求该班共有多少名学生;
(2)在条形图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.计算:$\sqrt{27}$-($\sqrt{12}$-$\sqrt{\frac{1}{3}}$)=$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,则$\left\{\begin{array}{l}{3{a}_{1}(x-1)+{b}_{1}(y+3)={c}_{1}}\\{3{a}_{2}(x-1)+{b}_{2}(y+3)={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若a,b均为正整数,且a>$\sqrt{11}$,b>$\root{3}{11}$,则a+b的最小值是(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知:如图,点P是正方形ABCD内一点,连接PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°得到△P'CB,若AB=m,PB=n(n<m).求△PAB旋转过程中边PA扫过区域(阴影部分)的面积;
(2)若PA=$\sqrt{2}$,PB=2$\sqrt{2}$,∠APB=135°,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知ax+by=10有两组解,为$\left\{\begin{array}{l}x=-1\\ y=0\end{array}\right.$和$\left\{\begin{array}{l}x=1\\ y=5\end{array}\right.$,则(  )
A.a=0,b=4B.a=-10,b=-4C.a=10,b=-4D.a=-10,b=4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若x,y为实数,且满足|x-3|+$\sqrt{y+3}$=0,则($\frac{x}{y}$)2018的值是1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解不等式组$\left\{\begin{array}{l}{2x+5≤3(x+2)}\\{2x-\frac{1-3x}{2}<1}\end{array}\right.$,把不等式组的解集在数轴上表示出来.

查看答案和解析>>

同步练习册答案