精英家教网 > 初中数学 > 题目详情
(2006•旅顺口区)已知抛物线y=x2-4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.
(1)求平移后的抛物线解析式;
(2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围;
(3)若将已知的抛物线解析式改为y=ax2+bx+c(a>0,b<0),并将此抛物线沿x轴方向向左平移-个单位长度,试探索问题(2).

【答案】分析:平移的实质可以可作顶点的平移,先将已知抛物线y=x2-4x+1写成顶点式,再按平移规律写出平移后的函数顶点式.
解答:解:(1)y=x2-4x+1
配方,得y=(x-2)2-3,
向左平移4个单位,得y=(x+2)2-3
∴平移后得抛物线的解析式为y=x2+4x+1;

(2)由(1)知,两抛物线的顶点坐标为(2,-3),(-2,-3)


∴两抛物线的交点为(0,1)
由图象知,若直线y=m与两条抛物线有且只有四个交点时,
m>-3且m≠1;

(3)由y=ax2+bx+c配方得y=a(x+2+
向左平移个单位长度得到抛物线的解析式为y=a(x-2+
∴两抛物线的顶点坐标分别为

得,
∴两抛物线的交点为(0,c)
由图象知满足(2)中条件的m的取值范围是:
m>且m≠c.
点评:此题主要考查抛物线的平移,直线与抛物线的交点等相关知识;此题综合性强,难度较大,要求学生有较好的运算能力.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2006•旅顺口区)已知抛物线y=x2-4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.
(1)求平移后的抛物线解析式;
(2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围;
(3)若将已知的抛物线解析式改为y=ax2+bx+c(a>0,b<0),并将此抛物线沿x轴方向向左平移-个单位长度,试探索问题(2).

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2006•旅顺口区)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段.
(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;
(2)一道数学综合题,需要讲解24分钟.问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36?

查看答案和解析>>

科目:初中数学 来源:2009年河南省郑州市董老师奥数二模试卷(2)(解析版) 题型:解答题

(2006•旅顺口区)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段.
(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;
(2)一道数学综合题,需要讲解24分钟.问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36?

查看答案和解析>>

科目:初中数学 来源:2006年辽宁省大连市旅顺口区中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•旅顺口区)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段.
(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;
(2)一道数学综合题,需要讲解24分钟.问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36?

查看答案和解析>>

同步练习册答案