【题目】如图1,在长方形中,,有一只蚂蚁在点 处开始以每秒1个单位的速度沿边向点爬行,另一只蚂蚁从点以每秒2个单位的速度沿边向点爬行,蚂蚁的大小忽略不计,如果、同时出发,设运动时间为s.
(1)当时,求的面积;
(2)当 时,试说明是直角二角形;
(3)当运动3s时,点停止运动,点以原速立即向点返回,在返回的过程中,是否存在点,使得平分?若存在,求出点运动的时间,若不存在请说明理由.
【答案】(1)8;(2)详见解析;(3)存在点Q,使得DP平分,此时s
【解析】
(1)根据题意求出t=2时PB和BQ的长,然后根据三角形面积公式即可求出面积;
(2)利用勾股定理求出DP,PQ,DQ,得到即可证明;
(3)根据题意得到AP=3,设Q再运动x秒,用x表示出BQ,CQ,作PH⊥BC于H,可证,求出DQ,最后在Rt△DCQ中利用勾股定理建立方程解出x,然后加上3秒,即为Q的运动时间.
(1)当时,
S△ABD =×4×4=8
(2)当时,
∴
∴
∵∠DQP=90°,
∴是直角三角形.
(3) 当时,,∴P是AB的中点,PA=PB=3,
此时BQ=6,设点Q返回时再运动x秒符合要求,则
作PH⊥BC于H,∵PD平分∠ADQ,又∵PA⊥AD,
在Rt△PBQ和Rt△PHQ中,PQ=PQ,PB=PH,
,
在Rt△DCQ中,
解得
所以Q的运动时间为秒
答:存在点,使得平分,此时Q点运动时间为秒.
科目:初中数学 来源: 题型:
【题目】为了对学生进行爱国主义教育,某校组织学生去看演出,有甲乙两种票,已知甲乙两种票的单价比为4:3,单价和为42元.
(1)甲乙两种票的单价分别是多少元?
(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:
如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中画出△ABC关于直线l对称的△A1B1C1;
(要求:A与A1,B与B1,C与C1相对应)
(2)求出△A1B1C1面积.
(3)在直线l上找一点P,使得PA+PB的值最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(2,3),则经过第2018次变换后所得的A点坐标是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知对称轴为y轴的抛物线y=ax2+bx+3,与x轴两个交点的横坐标分别为x1,x2.若点(x1,x2)在反比例函数y=的图象上,该抛物线与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P是∠AOB的内部任意一点,PM⊥OA,PN⊥OB,垂足分别是M、N,D是OP的中点
(1)求证:DM=DN
(2)连接MN,当∠MPN=______时,△DMN是等边三角形;
(3)探索∠MPN与∠MDN的数量关系,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.
填空:
①∠AEC的度数为 ;
②线段AE、BD之间的数量关系为 .
(2)拓展探究
如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC= °; ②请直接写出点D到PC的距离为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com