精英家教网 > 初中数学 > 题目详情
已知,在△ABC中,AB=4,AC=5,,点D是边AC上的点,点E是边AB上的点,且满足∠AED=∠A,DE的延长线交射线CB于点F,设AD=x,EF=y.

(1)如图1,用含x的代数式表示线段AE的长;
(2)如图1,求y关于x的函数解析式及函数的定义域;
(3)连接EC,如图2,求当x为何值时,△AEC与△BEF相似?
【答案】分析:(1)过点D作DH⊥AE,垂足为点H.根据等腰三角形的性质和三角函数的定义可得含x的代数式表示线段AE的长;
(2)过点D作DG∥AB,交BC于点G.根据平行线分线段成比例可得y关于x的函数解析式及函数的定义域;
(3)当△AEC与△BEF相似时,有两种情况:①∠A=∠FEB,;②∠A=∠FEB,;根据相似三角形的性质可得x的值.
解答:解:(1)过点D作DH⊥AE,垂足为点H.
∵∠A=∠AED,
∴AD=ED,

,AD=x,



(2)过点D作DG∥AB,交BC于点G.

∵AB=4,AC=5,


∵AB∥DG,

,EF=y,



(3)∵∠AED=∠FEB,∠AED=∠A,
∴∠A=∠FEB,
当△AEC与△BEF相似时,有两种情况:
①∠A=∠FEB,

又∵y=10-3x,

②∠A=∠FEB,

又∵y=10-3x,
(舍).
综上所述,当时,△AEC与△BEF相似.
点评:考查了相似形综合题,其中包括等腰三角形的性质、三角函数、平行线分线段成比例、相似三角形的性质,其中第三问要分两种情况讨论,综合性较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案