精英家教网 > 初中数学 > 题目详情

作抛物线C1关于x轴对称的抛物线C2,将抛物线C2向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2-1,则抛物线C1所对应的函数解析式是________.

y=-2(x-1)2+2
分析:根据题意易得抛物线C的顶点,进而可得到抛物线B的坐标,根据顶点式及平移前后二次项的系数不变可得抛物线B的解析式,而根据关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C1所对应的函数表达式.
解答:根据题意易得抛物线C的顶点为(-1,-1),
∵是向左平移2个单位,向上平移1个单位得到抛物线C的,
∴抛物线B的坐标为(1,-2),
可设抛物线B的坐标为y=2(x-h)2+k,代入得:y=2(x-1)2-2,
易得抛物线A的二次项系数为-2,顶点坐标为(1,2),
∴抛物线A的解析式为y=-2(x-1)2+2,
故答案为y=-2(x-1)2+2.
点评:本题主要考查了讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可,关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图所示,抛物线c1:y=ax2+bx+c的顶点A在x轴的正半轴上,并与y轴交于点B,OA=
3
,AB=2
3
,抛物线c2与抛物线c1关于y轴对称.
(1)求抛物线c1的函数解析式,并直接写出抛物线c2的函数解析式;
(2)设l是抛物线c2的对称轴,P是l上的一点,求当△PAB的周长最小时点P的坐标;
(3)在抛物线c1上是否存在点D,过点D作DC⊥AB于C,使得△DCB与△AOB相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•和平区一模)在平面直角坐标系中,O为坐标原点,已知抛物线C1:y=x2,点A(2,4).
(Ⅰ)求直线OA的解析式;
(Ⅱ)直线x=2与x轴相交于点B,将抛物线C1从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动,设抛物线顶点M的横坐标为m.
①当m为何值时,线段PB最短?
②当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由;
(Ⅲ)将抛物线C1作适当的平移,得抛物线C2:y=x2-x+c,若点D(x1,y1),E(x2,y2)在抛物线C2上,且D、E两点关于坐标原点成中心对称,求c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,如图所示,抛物线c1:y=ax2+bx+c的顶点A在x轴的正半轴上,并与y轴交于点B,OA=数学公式,AB=数学公式,抛物线c2与抛物线c1关于y轴对称.
(1)求抛物线c1的函数解析式,并直接写出抛物线c2的函数解析式;
(2)设l是抛物线c2的对称轴,P是l上的一点,求当△PAB的周长最小时点P的坐标;
(3)在抛物线c1上是否存在点D,过点D作DC⊥AB于C,使得△DCB与△AOB相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线C1:y=(x+1)2-4的顶点为P,与x轴的交点为A、B(A左B右),将抛物线C1关于x轴作轴对称变换,再将变换后的抛物线沿y轴的正方向、x轴的正方向都平移.m个单位(m>l),得到抛物线C2,抛物线C2的顶点为Q.
作业宝
(1)求m=3时,抛物线C2的解析式;
(2)根据下列条件分别求m:
①如图1,若PQ正好被y轴平分,求m的值;
②如图2,若PQ经过坐标原点,求m的值.
(3)如图3,若抛物线C2的顶点Q关于直线PA的对称点Q′恰好落在x轴上,试求m的值.

查看答案和解析>>

科目:初中数学 来源:2010年广东省深圳市宝安区中考数学三模试卷(解析版) 题型:解答题

已知,如图所示,抛物线c1:y=ax2+bx+c的顶点A在x轴的正半轴上,并与y轴交于点B,OA=,AB=,抛物线c2与抛物线c1关于y轴对称.
(1)求抛物线c1的函数解析式,并直接写出抛物线c2的函数解析式;
(2)设l是抛物线c2的对称轴,P是l上的一点,求当△PAB的周长最小时点P的坐标;
(3)在抛物线c1上是否存在点D,过点D作DC⊥AB于C,使得△DCB与△AOB相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案