【题目】阅读材料:关于三角函数还有如下的公式:
sin(α±β)=sinαcosβ±cosαsinβ
tan(α±β)=
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.
例:tan75°=tan(45°+30°)===
根据以上阅读材料,请选择适当的公式解答下面问题:
(1)计算:sin15°;
(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.
【答案】(1);(2).
【解析】
试题分析:(1)把15°化为45°﹣30°以后,再利用公式sin(α±β)=sinαcosβ±cosasinβ计算,即可求出sin15°的值;
(2)先根据锐角三角函数的定义求出BE的长,再根据AB=AE+BE即可得出结论.
试题解析:(1)sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°==;
(2)在Rt△BDE中,∵∠BED=90°,∠BDE=75°,DE=AC=7米,∴BE=DEtan∠BDE=DEtan75°.
∵tan75°=,∴BE=7()=,∴AB=AE+BE==(米).
答:纪念碑的高度为()米.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P的坐标为(,),点Q的坐标为(,),且,,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q 的“相关矩形”的示意图.
(1)已知点A的坐标为(1,0).
①若点B的坐标为(3,1)求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为,点M的坐标为(m,3).若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“重庆到处都人从众”……今年的五一小长假,相信重庆市民的朋友圈已被“重庆太火”刷屏了.据重庆市旅游发展委员会公布的数据显示,五一节四天,重庆共接待境内外游客2559万人次,2259万用科学记数法表示为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.
(1)图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.
(2)若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第(1)问中EF与BE、CF间的关系还存在吗?
(3)若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com