如图,在梯形ABCD中, AB∥DC,∠BCD=90°,且AB=1,BC=2,
tan∠ADC=2.
⑴求证:DC=BC;
⑵E是梯形内的一点,F是梯形外的一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;⑶在⑵的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.![]()
(1)过A作DC的垂线AM交DC于M,
则![]()
AM=BC=2.(1分) 又tan∠ADC=2,所以
.(2分)
因为MC=AB=1,所以DC=DM+MC=2,即DC=BC.(3分)
(2)等腰直角三角形.(4分)
证明:因为DE=DF,∠EDC=∠FBC,DC=BC. 所以,△DEC≌△BFC(5分)
所以,CE=CF,∠ECD=∠BCF.
所以,∠ECF=∠BCF+∠BCE=∠ECD+∠BCE=∠BCD=90°
即△ECF是等腰直角三角形.(6分)
(3)设BE=k,则CE=CF=2k,所以
.(7分)
因为∠BEC=135°,又∠CEF=45°,所以∠BEF=90°.(8分)
所以
(9分)
所以
.(10分)
解析
科目:初中数学 来源: 题型:
| A、3cm | B、7cm | C、3cm或7cm | D、2cm |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com