精英家教网 > 初中数学 > 题目详情
如图,已知Rt△ABC的斜边AB=8cm,AC=4cm.
(1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?为什么?
(2)以点C为圆心,分别以2cm和4cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系?
(1)过C作CD⊥AB,交AB于点D,如图所示:

Rt△ABC的斜边AB=8cm,AC=4cm,
根据勾股定理得:BC=4
3
cm,
∵S△ABC=
1
2
AB•CD=
1
2
AC•BC,
∴CD=
AC•BC
AB
=2
3
cm,
则以点C为圆心,当半径为2
3
cm时,AB与⊙C相切;
(2)∵2<2
3
<4
∴以点C为圆心,分别以2cm和4cm为半径作两个圆,这两个圆与直线AB分别相离和相交;
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,已知△ABC是等腰三角形,∠C=90°,AC=BC=
2
,在BC上取一点O,以O为圆心,OC为半径作半圆与AB相切于点E,则⊙O的半径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,2.5cm为半径的圆与AB的位置关系是(  )
A.相离B.相交C.相切D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知等边△ABC,以BC为直径作半⊙O交AB于D,DE⊥AC于点E.
(1)求证:DE是半⊙O的切线;
(2)若DE=
3
,求△ABC与半⊙O重合部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为(  )
A.3B.6C.
3
3
2
D.3
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,CA,CB分别与⊙O相切于点D,B,圆心O在AB上,AB与⊙O的另一交点为E,AE=2,⊙O的半径为1,则BC的长为(  )
A.
2
B.2
2
C.
2
2
D.
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长交AD的延长线于点F,△ABC的外接圆⊙O交CF于点M.
(1)求证:BE是⊙O的切线;
(2)求证:AC2=CM•CF;
(3)若CM=
2
7
7
,MF=
12
7
7
,求BD;
(4)若过点D作DGBE交EF于点G,过G作GHDE交DF于点H,则易知△DGH是等边三角形.设等边△ABC、△BDE、△DGH的面积分别为S1、S2、S3,试探究S1、S2、S3之间的等量关系,请直接写出其结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:①点F是BD中点;②CG是⊙O的切线;
(2)若FB=FE=2,求⊙O的半径.

查看答案和解析>>

同步练习册答案