精英家教网 > 初中数学 > 题目详情

【题目】先化简,再求值: ÷(1﹣ ).其中m满足一元二次方程m2+(5 tan30°)m﹣12cos60°=0.

【答案】解:原式= ÷ = = = =
方程m2+(5 tan30°)m﹣12cos60°=0,化简得:m2+5m﹣6=0,
解得:m=1(舍去)或m=﹣6,
当m=﹣6时,原式=﹣
【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,求出m的值代入计算即可求出值.
【考点精析】根据题目的已知条件,利用分式的混合运算的相关知识可以得到问题的答案,需要掌握运算的顺序:第一级运算是加法和减法;第二级运算是乘法和除法;第三级运算是乘方.如果一个式子里含有几级运算,那么先做第三级运算,再作第二级运算,最后再做第一级运算;如果有括号先做括号里面的运算.如顺口溜:"先三后二再做一,有了括号先做里."当有多层括号时,先算括号内的运算,从里向外{[(?)]}.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CBy,y轴负半轴于B(0,b),(a-3)2+|b+4|=0,S四边形AOBC=16.

(1)求C点坐标;

(2)如图2,D为线段OB上一动点,ADAC,ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.

(3)如图3,D点在线段OB上运动时,DMADBCM,BMD、DAO的平分线交于N,D点在运动过程中,N的大小是否变化?若不变,求出其值,若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F等于(
A.9.5°
B.19°
C.15°
D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°,AB=AC,AD是经过A点的一条直线,且B、CAD的两侧,BDADD,CEADE,交AB于点F,CE=10,BD=4,则DE的长为(  )

A. 6 B. 5 C. 4 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.

(1)∵DE∥AB,( 已知 )

∴∠2=   . (  ,  

(2)∵DE∥AB,(已知 )

∴∠3=   .(  ,  

(3)∵DE∥AB(已知 ),

∴∠1+   =180°.(  ,  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,BD是△ABC的角平分线.

(1)如图1,若AD=BD,求∠A的度数;

(2)如图2,在(1)的条件下,作DE⊥AB于E,连接EC.求证:△EBC是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DMDN分别交ABAC于点EF.则下列四个结论:BDADCD;②△AED≌△CFD;③BE+CFEF;④S四边形AEDFBC2.其中正确结论是_____(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知△CAB△CDE中,CA=CB,CD=CE,∠BCA=∠DCE=.BE,BD.

(1)如图1,若∠BCA=60,BDAE交于点F,求∠AFB的度数

(2)如图2,请探究∠EBD,∠AEB之间的关系

(3)如图3,直接写出∠EBD,∠AEB之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案