【题目】为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.
(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?
(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?
【答案】
(1)解:设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,
解得,
即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;
(2)解:设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,
则
解得,12.5≤x≤15,
第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;
第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;
第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;
即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元
【解析】(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.
科目:初中数学 来源: 题型:
【题目】图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求(1),(2),(3)的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.
(1)画一个底边为4,面积为8的等腰三角形;
(2)画一个面积为10的等腰直角三角形;
(3)画一个面积为12的平行四边形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初中学生对待学习的态度一直是教育工作者极为关注的一个问题.为此市教育局对本市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:喜欢;B级:不太喜欢;C级:不喜欢),并将调查结果绘制成图1和图2的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计该市近80000名初中生中大约有多少名学生学习态度达标(达标包括A级和B级)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某银行去年新增加居民存款10亿元人民币.
(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?
(2)一台激光点钞机的点钞速度是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABD中,AB=AD, 将△ABD沿BD翻折,使点A翻折到点C. E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.
(1)依题意补全图形;
(2)判断∠DFC与∠BAE的大小关系并加以证明;
(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠A=110°,E、F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC等于( )
A. 45° B. 35° C. 55° D. 50°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 在△ABC中,AC=3、AB=4、BC=5, P为BC上一动点,PG⊥AC于点G,PH⊥AB
于点H,M是GH的中点,P在运动过程中PM的最小值为( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
【答案】D
【解析】分析: 由AC=3、AB=4、BC=5,得AC2+AB2=BC2,则∠A=90°,再结合PG⊥AC,PH⊥AB,可证四边形AGPH是矩形;连接AP,可知当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法,求出GH的值,
详解:∵AC=3、AB=4、BC=5,
∴AC2=9,AB2=16,BC2=25,
∴AC2+AB2=BC2,
∴∠A=90°.
∵PG⊥AC,PH⊥AB,
∴∠AGP=∠AHP=90° ,
∴四边形AGPH是矩形.
连接AP,
∴GH=AP.
∵当AP⊥BC时,AP最短,
∴3×4=5AP,
∴AP=,
∴PM的最小值为1.2.
故选D.
点睛: 本题考查了勾股定理的逆定理,矩形的判定与性质,垂线段最短,面积法求线段的长,需结合矩形的判定方法,矩形的性质以及三角形面积的知识求解;确定出点P的位置是解答本题的关键.
【题型】单选题
【结束】
18
【题目】计算:
(1) (2)
(3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
请解决下列问题:
(1)已知点M,N是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;
(2)如图2,若点F、M、N、G分别是AB、AD、AE、AC边上的中点,点D,E是线段BC的勾股分割点,且EC>DE>BD,求证:点M,N是线段FG的勾股分割点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com