【题目】如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?
(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.
【答案】(1)6秒;(2)6.5秒;(3)7秒.
【解析】分析:(1)设经过ts时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;
(2)设经过ts时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可;
(3)设经过t(s),四边形PQCD是等腰梯形,利用EP=2列出有关t的方程求解即可.
详解:(1)设经过x秒,四边形PQCD为平行四边形
即PD=CQ
所以24﹣x=3x,
解得:x=6.
(2)设经过y秒,四边形PQBA为矩形,
即AP=BQ,
所以y=26﹣3y,
解得:y=.
(3)设经过t秒,四边形PQCD是等腰梯形.
过P点作PE⊥AD,过D点作DF⊥BC,
∴∠QEP=∠DFC=90°
∵四边形PQCD是等腰梯形,
∴PQ=DC.
又∵AD∥BC,∠B=90°,
∴AB=PE=DF.
在Rt△EQP和Rt△FCD中,
PQ=DC
PE=DF
∴Rt△EQP≌Rt△FCD(HL).
∴EQ=FC
∵FC=BC﹣AD=26﹣24=2.
又∵BQ=BC-CQ=26﹣3t,
∴EQ=AP﹣BQ=t﹣(26﹣3t)=4t-26.
∴4t-26=2
得:t=7.
∴经过7s,PQ=CD.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.
(1)求证:四边形ABEF是菱形;
(2)连接CF,若∠ABC=60°,AB= 4,AF =2DF,求CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下内容,并解决所提出的问题:
我们知道:;;所以.
用与相同的方法可计算得;.
归纳以上的学习过程,可猜测结论:________.
利用以上的结论计算以下各题:①________;②=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线l1:y=(x﹣2)2﹣2与x轴分别交于O、A两点,将抛物线l1向上平移得到l2 , 过点A作AB⊥x轴交抛物线l2于点B,如果由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线l2的函数表达式为( )
A.y=(x﹣2)2+4
B.y=(x﹣2)2+3
C.y=(x﹣2)2+2
D.y=(x﹣2)2+1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为﹣1,3,则下列结论正确的个数有( )
①ac<0;②2a+b=0;③4a+2b+c>0;④对于任意x均有ax2+bx≥a+b.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=8,AD=5,点E为DC边上一个动点,把△ADE沿AE折叠,点D的对应点D’落在矩形ABCD的对称轴上时,DE的长为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com