精英家教网 > 初中数学 > 题目详情
2、顺次连接四边形ABCD的四条边的中点,得到一个矩形,那么(  )
分析:根据矩形的性质得到∠FEH=90°,根据三角形的中位线定理得出EF∥AC,根据平行线的性质推出∠FEH+∠CME=180°,∠EMC+∠BOA=180°,即推出∠BOA=∠FEH=90°,即可得到答案.
解答:
解:∵矩形EFGH,
∴∠FEH=90°,
∵E是AB的中点,F是BC的中点,
∴EF∥AC,
∴∠FEH+∠CME=180°,
同理EH∥BD,
∴∠EMC+∠BOA=180°,
∴∠BOA=∠FEH=90°,
∴AC⊥BD,
故选B.
点评:本题主要考查对矩形的性质和判定,三角形的中位线定理,平行线的性质,垂直的定义等知识点的理解和掌握,能灵活运用这些性质进行证明是证此题的关键.题型较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=
12
BC.根据上面的结论:
(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;
(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,若顺次连接四边形ABCD各边中点所得四边形EFGH是菱形,则称原四边形ABCD为“中母菱形”.定义:若四边形的对角线相等,那么这个四边形是中母菱形.
(1)请写一个你学过的特殊四边形中是中母菱形的图形的名称.
(2)如图有等边三角形ABC中,D、E分别是AB、AC的中点,连接DE,猜想图中哪个四边形是中母菱形,并加以证明.
(3)在等边三角形ABC中,若D、E不是AB、AC的中点,且BD=AE,探究满足上述条件的图形中是否在中母菱形,并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在边长为1的正方形网格中,△A′B′C′与△ABC是中心对称图形.
(1)在图中标出△A′B′C′与△ABC的对称中心点O;
(2)如果将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1
(3)画出△A1B1C1绕点O旋转180°后得到的△A2B2C2
(4)顺次连接C、C1、C′、C2,所得到的图形是轴对称图形吗?
(5)求出四边形CC1C′C2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,若顺次连接四边形ABCD各边中点所得四边形EFGH是菱形,则称原四边形ABCD为“中母菱形”.定义:若四边形的对角线相等,那么这个四边形是中母菱形.
(1)请写一个你学过的特殊四边形中是中母菱形的图形的名称.
(2)如图有等边三角形ABC中,D、E分别是AB、AC的中点,连接DE,猜想图中哪个四边形是中母菱形,并加以证明.
(3)在等边三角形ABC中,若D、E不是AB、AC的中点,且BD=AE,探究满足上述条件的图形中是否在中母菱形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2008年内蒙古鄂尔多斯市东胜实验中学中考数学模拟试卷(解析版) 题型:解答题

如图1,若顺次连接四边形ABCD各边中点所得四边形EFGH是菱形,则称原四边形ABCD为“中母菱形”.定义:若四边形的对角线相等,那么这个四边形是中母菱形.
(1)请写一个你学过的特殊四边形中是中母菱形的图形的名称.
(2)如图有等边三角形ABC中,D、E分别是AB、AC的中点,连接DE,猜想图中哪个四边形是中母菱形,并加以证明.
(3)在等边三角形ABC中,若D、E不是AB、AC的中点,且BD=AE,探究满足上述条件的图形中是否在中母菱形,并证明你的结论.

查看答案和解析>>

同步练习册答案