【题目】如图,已知,BD与CE相交于点O,AD=AE,∠B=∠C,请解答下列问题:
(1)△ABD与△ACE全等吗?为什么?
(2)BO与CO相等吗?为什么?
【答案】(1)△ABD与△ACE全等,理由见解析;(2)(2)BO与CO相等,理由见解析.
【解析】试题分析:(1)△ABD≌△ACE,因为已知的两个条件,再加上∠A=∠A,利用AAS可证全等;
(2)先利用(1)中,△ABD≌△ACE,可得AB=AC,而AD=AE,利用等量减等量差相等,可得BE=CD,再加上∠B=∠C,∠BOE=∠COD,利用AAS可证△BOE≌△COD,那么利用全等三角形的性质可得BO=CO.
试题解析:
△ABD与△ACE全等,理由:
(1)在△ABD与△ACE中
∵∠A=∠A,∠B=∠C,AD=AE,
∴△ABD≌△ACE(AAS).
(2)BO与CO相等,理由:
∵△ABD≌△ACE,
∴AB=AC,
∵AE=AD,
∴AB﹣AE=AC﹣AD,
即BE=CD,
在△BOE与△COD中,
∵∠EOB=∠DOC,∠B=∠C,BE=CD,
∴△BOE≌△COD(AAS).
∴BO=CO.
科目:初中数学 来源: 题型:
【题目】体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:
次数 | 60≤x<90 | 90≤x<120 | 120≤x<150 | 150≤x<180 | 180≤x<210 |
频数 | 16 | 25 | 9 | 7 | 3 |
(1)全班有多少同学?
(2)组距是多少?组数是多少?
(3)跳绳次数x在120≤x<180范围的同学有多少?占全班同学的百分之几(精确到0.1%)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了防控甲型H1N1流感,某校积极进行校园的环境消毒,为此购买了甲、乙两种消毒液,现已知过去两次购买这两种消毒液的瓶数和总费用如表所示:
甲种消毒液(瓶) | 乙种消毒液(瓶) | 总费用(元) | |
第一次 | 40 | 60 | 660 |
第二次 | 80 | 30 | 690 |
(1)求每瓶甲种消毒和每瓶乙种消毒液各多少元?
(2)现在学校决定购买甲乙两种消毒液共300瓶,要求甲乙两种的数量都不少于100瓶,并且甲的数量不少于乙数量的,请你帮助学校计算购买时最低费用为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上则a的值是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t,
①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;
②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经统计我市去年共引进世界500强外资企业19家,累计引进外资410000000美元,数字410000000用科学记数法表示为( )
A. 41×107 B. 4.1×108 C. 4.1×109 D. 0.41×109
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五一假期,黄石市退出了东方山休闲娱乐、传统文化展演、游园赏景赏花、佛教文化体验等精品文化活动,共接待旅游总人数9 608 00人次,将9 608 00用科学记数法表示为( )
A. 9608×102 B. 960.8×103 C. 96.08×104 D. 9.608×105
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com