精英家教网 > 初中数学 > 题目详情
(2011•资阳)如图,已知反比例函数y=
mx
(x>0)的图象与一次函数y=-x+b的图象分别交于A(1,3)、B两点.
(1)求m、b的值;
(2)若点M是反比例函数图象上的一动点,直线MC⊥x轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2,S=S2-S1,求S的最大值.
分析:(1)把A点的坐标代入反比例函数与一次函数的解析式,求出m,b即可;
(2)设点M的坐标为(x,
3
x
),点N的坐标为(x,-x+4),求出四边形MDOC和MDEN的面积,代入求出S=(-x2+4x)-3,把上式化成顶点式,即可求出答案.
解答:(1)解:把A(1,3)的坐标分别代入y=
m
x
、y=-x+b,
∴m=xy=3,3=-1+b,
∴m=3,b=4.

(2)解:由(1)知,反比例函数的解析式为y=
3
x
,一次函数的解析式为y=-x+4,
∵直线MC⊥x轴于C,交直线AB于点N,
∴可设点M的坐标为(x,
3
x
),点N的坐标为(x,-x+4),其中,x>0,
又∵MD⊥y轴于D,NE⊥y轴于E,∴四边形MDOC、NEOC都是矩形,
∴S1=x•
3
x
=3,S2=x•(-x+4)=-x2+4x,
∴S=S2-S1=(-x2+4x)-3=-(x-2)2+1.其中,x>0,
∵a=-1<0,开口向下,
∴有最大值,
∴当x=2时,S取最大值,其最大值为1.
点评:本题考查了用法待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题,反比例函数的几何意义,配方法的应用等知识点的运用,本题综合性比较强,通过做此题培养了学生的计算能力和推理能力,题目比较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•资阳)如图,已知射线OP的端点O在直线MN上,∠2比∠1的2倍少30°,设∠2的度数为x,∠1的度数为y,则x、y满足的关系为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•资阳)如图所示的几何体的左视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•资阳)如图,在数轴上表示实数
14
的点可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•资阳)如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是(  )

查看答案和解析>>

同步练习册答案