精英家教网 > 初中数学 > 题目详情
(2012•荆州)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程
1
x-1
+
1
m
=1
的解为
x=3
x=3
分析:首先根据题意可得y=x+m-2,再根据正比例函数的解析式为:y=kx(k≠0)可得m的值,把m的值代入关于x的方程,再解分式方程即可.
解答:解:根据题意可得:y=x+m-2,
∵“关联数”[1,m-2]的一次函数是正比例函数,
∴m-2=0,
解得:m=2,
则关于x的方程
1
x-1
+
1
m
=1
变为
1
x-1
+
1
2
=1,
解得:x=3,
检验:把x=3代入最简公分母2(x-1)=4≠0,
故x=3是原分式方程的解,
故答案为:x=3.
点评:此题主要考查了解分式方程,以及正比例函数,关键是求出m的值,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;解分式方程一定注意要验根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•荆州)已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有(  )

查看答案和解析>>

同步练习册答案