精英家教网 > 初中数学 > 题目详情

(本题满分12分)

 已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。

1.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;

2.(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.

①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;

②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。

 

【答案】

 

1.(1)证明:如图I,分别连接OE、0F

 ∵四边形ABCD是菱形

 ∴AC⊥BD,BD平分∠ADC.AD=DC=BC

 ∴∠COD=∠COB=∠AOD=90°.

   ∠ADO=∠ADC=×60°=30°

  又∵E、F分别为DC、CB中点

   ∴OE=CD,OF=BC,AO=AD

  ∴0E=OF=OA   ∴点O即为△AEF的外心

2.(2)

①猜想:外心P一定落在直线DB上。

证明:如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,P J⊥AD于J

∴∠PIE=∠PJD=90°,∵∠ADC=60°

∴∠IPJ=360°-∠PIE-∠PJD-∠JDI=120°

∵点P是等边△AEF的外心,∴∠EPA=120°,PE=PA,

∴∠IPJ=∠EPA,∴∠IPE=∠JPA

∴△PIE≌△PJA, ∴PI=PJ

∴点P在∠ADC的平分线上,即点P落在直线DB上。

 

为定值2.

当AE⊥DC时.△AEF面积最小,

此时点E、F分别为DC、CB中点.

连接BD、AC交于点P,由(1)

可得点P即为△AEF的外心

解法一:如图3.设MN交BC于点G

设DM=x,DN=y(x≠0.y≠O),则 CN=

∵BC∥DA ∴△GBP∽△MDP.∴BG=DM=x.

[来源:Z&xx&k.Com]

∵BC∥DA,∴△NCG∽△NDM

,∴

,即

其它解法略。

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分12分,任选一题作答.)
Ⅰ、如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当0<t<
52
时,证明DC⊥OA;
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、E、D为顶点的四边形是梯形,求点E的坐标.
Ⅱ、(1)如图Ⅱ-1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图Ⅱ-2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
(3)如图Ⅱ-3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分12分)如图,在平面直角坐标系中,直线分别交轴,轴于AB两点,点COB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点AB的坐标,并求直线ABCD交点的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P,垂足为H,连接.设点P的运动时间为秒.
①若△MPH与矩形AOCD重合部分的面积为1,求的值;
②点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏省盐城市九年级上学期学情调查数学卷 题型:解答题

(本题满分12分)某商场购进一批单价为16元日用品,销售一段时间后,为了获得更多利润,商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数Y(件)是价格X(元/件)的一次函数

1.(1)试求Y 与X之间的关系式。

2.(2)在商品积压,且不考虑其它因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本)

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏省海安县五校联考九年级上学期期中考试数学卷 题型:解答题

(本题满分12分)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.

1.(1)求弦AB的长;

2.(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;

3.(3)记△ABC的面积为S,若=4,求△ABC的周长.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏省扬州市八年级第一学期期末考试数学卷 题型:解答题

(本题满分12分)如图①,一条笔直的公路上有ABC 三地,BC 两地相距 150 千米,甲、乙两辆汽车分别从BC 两地同时出发,沿公路匀速相向而行,分别驶往CB 两地.甲、乙两车到A 地的距离(千米)与行驶时间 x(时)的关系如图②所示.

根据图象进行以下探究:

1.(1)请在图①中标出 A地的位置,并作简要说明;

 2.(2) 甲的速度为            ,乙的速度为          .

3.(3)求图②中M点的坐标,并解释该点的实际意义;

4.(4)在图②中补全甲车到达C地的函数图象,求甲车到 A地的距离与行驶时间x的函数关系式;

5.(5)出发多长时间,甲、乙两车距A点的距离相等?

 

查看答案和解析>>

同步练习册答案