C
分析:根据高利用角的关系求出∠DBF=∠DAC,根据∠ABC=45°,AD是三角形的高求出∠BAD=45°,然后根据等角对等边的性质得到AD=BD,然后利用角边角证明△ACD与△BFD全等,根据全等三角形对应边相等求出CD的长度,再求出AD的长度,然后即可得解.
解答:∵AD、BE是三角形的高,
∴∠C+∠DBF=90°,∠C+∠CAD=90°,
∴∠DBF=∠DAC,
∵∠ABC=45°,AD是三角形是高,
∴∠BAD=45°,
∴∠ABC=∠BAD,
∴AD=BD.
在△ACD与△BFD中,

,
∴△ACD≌△BFD(ASA),
∴CD=FD,
∵FD=4,AF=2,
∴CD=4,
BD=AD=FD+AF=4+2=6,
∴BC=6+4=10.
故选C.
点评:本题考查了全等三角形的判定与性质,利用好直角的关系找出相等的角,从而得到三角形全等的条件是解题的关键.