精英家教网 > 初中数学 > 题目详情
在直角坐标系中,点O1的坐标为(1,0),⊙O1与x轴交于原点O和点A,又点B、C的坐标分别为(-1,0)、(0,b),且0<b<3,直线l是过B、C点的直线.
(1)当点C在线段OC上移动时,过点O1作O1D⊥直线l,交l于点D,若
S△BOCS△BDO1
=a
,试求a、b的函数关系式及a的取值范围;
(2)当D点是⊙O1的切点时,求直线l的解析式.
分析:(1)因为∠DBO1=∠OBC,∠BDO1=∠BOC=90°,可证△BDO1∽△BOC,利用相似三角形面积的比等于相似比的平方,可得S△BOC:S△BDO1=BC2:O1B2=a,从而求出a、b的关系式,利用b的取值即可求出a的范围.
(2)利用D是⊙O1的切点,连接O1D,则O1D⊥BC.利用△BOC∽△BDO1,可得
BD
BO
=
DO1
OC
,进而求出b的值,就求出了C的坐标.
设过B、C的直线l的解析式为y=kx+b,利用待定系数法即可求解.
解答:解:(1)∵∠DBO1=∠OBC,∠BDO1=∠BOC=90°,
∴△BDO1∽△BOC.
∴S△BOC:S△BDO1=BC2:O1B2=a
1+b2
4
=a
∴a=
1+b2
4

∵0<b<3
1
4
<a<
5
2


(2)∵D是⊙O1的切点,连接O1D,则O1D⊥BC.
同上可知△BOC∽△BDO1
BD
BO
=
DO1
OC

3
1
=
1
b

b=
3
3
,C(0,
3
3
).
∵B(-1,0),
设过B、C的直线l的解析式为y=kx+b,
则有
0=-k+b
b=
3
3

k=
3
3
b=
3
3

y=
3
3
x+
3
3
点评:本题需仔细分析题意,利用待定系数法和相似三角形的性质即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角坐标系中,点A的坐标为(-4,0),点C为y轴上一动点,连接AC,过点精英家教网C作CB⊥AC,交x轴于B.
(1)当点B坐标为(1,0)时,求点C的坐标;
(2)如果sinA和cosA是关于x的一元二次方程x2+ax+b=0的两个实数根,过原点O作OD⊥AC,垂足为D,且点D的纵坐标为a2,求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在直角坐标系中,点A(4,0),点B(0,3),若有一个直角三角形与Rt△ABO全等,且它们有一条公共边,请画出符合要求的图形,并直接写出这个直角三角形未知顶点的坐标.(不必写出计算过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

16、在直角坐标系中,点A(3,-2)关于y轴的对称点是
(-3,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,点A(2,-2)与点B(-2,1)之间的距离AB=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

20、在直角坐标系中,点(2,-3)与它关于x轴的对称点的距离是
6

查看答案和解析>>

同步练习册答案