精英家教网 > 初中数学 > 题目详情
12.如图,AB∥CD,∠B=26°,∠D=39°,求∠BED的度数.
解:过点E作EF∥AB,
∴∠1=∠B=26°两直线平行,内错角相等
∵AB∥CD(已知),EF∥AB(所作),
∴EF∥CD.(如果两条直线都与第三条直线平行,那么这两条直线也平行 )
∴∠2=∠D=39°(两直线平行,内错角相等)
∴∠BED=∠1+∠2=65°.

分析 作EF∥AB,由于AB∥CD,则可判断AB∥EF∥CD,根据平行线的性质得∠1=∠B=26°,∠2=∠D=39°,于是得到∠BED的度数.

解答 解:过点E作EF∥AB,
∴∠1=∠B=26° (两直线平行,内错角相等)
∵AB∥CD(已知),EF∥AB(所作),
∴EF∥CD.( 如果两条直线都与第三条直线平行,那么这两条直线也平行)
∴∠2=∠D=39°(两直线平行,内错角相等)
∴∠BED=∠1+∠2=65°.
故答案为两直线平行,内错角相等; 如果两条直线都与第三条直线平行,那么这两条直线也平行;两直线平行,内错角相等

点评 本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.解下列方程
(1)x(x-2)+x-2=0
(2)2x2+2x-1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是(  )
A.∠B=2∠K
B.六边形ABCDEF的周长=六边形GHIJKL的周长
C.BC=2HI
D.S六边形ABCDEF=2S六边形GHIJKL

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知二次函数y=ax2+bx+c+2的图象如图所示,有下列4个结论:①abc<0;②b2=4ac;③a+c=b-2;④m(am+b)+b>a(m≠-1),其中结论正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知:a∥b,∠3=137°,则∠1=137°,∠2=43°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.化简$\sqrt{27}+\sqrt{48}$的结果是(  )
A.$\sqrt{75}$B.$5\sqrt{3}$C.$\sqrt{2}$D.$7\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.探究:已知m=2$\sqrt{2}$+3,n=2$\sqrt{2}$-3.
则(1)m+n=4$\sqrt{2}$;
(2)mn=-1;
(3)m2+n2=34;
(4)m2-n2=24$\sqrt{2}$;
(5)m2-2mn+n2=36.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知|a|=5,|b|=2.
(1)若a<0,b>0,求3a-2b的值;
(2)若a>0,b<0,|c-2|=1,求2abc+|b-c|的值.

查看答案和解析>>

同步练习册答案