精英家教网 > 初中数学 > 题目详情
10.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(  )
①∠DCF=$\frac{1}{2}$∠BCD;②EF=CF;③∠DFE=3∠AEF;④S△BEC=2S△CEF
A.①②③B.②③④C.①②④D.①③④

分析 ①根据平行四边形的性质和平行线的性质解答即可;
②延长EF,交CD延长线于M,证明△AEF≌△DMF,得到EF=FM,根据直角三角形斜边上的中线等于斜边的一半解答;
③设∠FEC=x,用x分别表示出∠DFE和∠AEF,比较即可;
④根据EF=FM,得到S△EFC=S△CFM,根据MC>BE,得到S△BEC<2S△EFC

解答 解:①∵F是AD的中点,
∴AF=FD,
∵在?ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=$\frac{1}{2}$∠BCD,故此选项正确;
②如图1,延长EF,交CD延长线于M,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,
∴AF=FD,
在△AEF和△DFM中,
$\left\{\begin{array}{l}{∠A=∠MDF}\\{∠AFE=∠DFM}\\{AF=DF}\end{array}\right.$,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FE,故②正确;
③设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此选项正确;
④∵EF=FM,
∴S△EFC=S△CFM
∵MC>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF错误,
故选:A.

点评 本题考查的是平行四边形的性质、全等三角形的判定与性质、直角三角形的性质,正确作出辅助线、得出△AEF≌△DMF是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,抛物线y=ax(x-2)(0<a<4)与x轴交于O,A两点,顶点为M,对称轴交抛物线y=(4-a)x2于点B,连接OB,AB,OM,AM,四边形OMAB面积为s.
(1)试说明a=2时,四边形OMAB是菱形.
(2)当a的值分别取1,2,3时,分别计算s的值,将其填入如表
a 1 2 3
 s  
(3)将抛物线y=ax(x-2)(0<a<4)改为抛物线y=ax(x-2m)(0<a<4),其他条件不变,当四边形OMAB为正方形时,a=2,m=$\frac{1}{2}$.
(4)将抛物线y=ax(x-2)(0<a<4)改为抛物线y=ax(x-2m)(0<a<4),其他条件不变,s=4m3(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.玄武区四月份第一周连续七天的空气质量指数(AQI)分别为:128,97,60,72,66,69,86.则这七天空气质量变化情况最适合用哪种统计图描述(  )
A.条形统计图B.扇形统计图C.折线统计图D.以上都不对

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.关于x的一元二次方程a2x2+2ax-3=0(a≠0).
(1)求证:方程总有两个不相等的实数根;
(2)当a<0时,设原方程的两个根分别为x1、x2,且x1>x2
①当-2≤a<-1时,求:x1,x2的取值范围;
②设点A(a,x1),B(a,x2)是平面直角坐标系xOy中的两点,且$OA=\sqrt{3}OB$,求证:△ABO是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.用换元法解下列方程:
(1)x-12+$\sqrt{x}$=0;
(2)x2+3x+$\sqrt{{x}^{2}+3x}$=6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.现在的乐陵已经实现村村通公路,现有两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.
(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)
(2)设AB的垂直平分线交ME于点N,且MN=4($\sqrt{3}$+1)km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中B(3,2),BC⊥y轴于C,BA⊥x轴于A,点E在线段AB上从B向A以每秒1个单位的速度运动,运动时间为t秒(0<t<2).将BE沿BD折叠,使E点恰好落在BC上的F处.
(1)如图1,若E为AB的中点,请直接写出F、D两点的坐标:F(2,2)    D(1,0)
(2)如图1,连接CD,在(1)的条件下,求证:CD=FD.
(3)如图2,在E点运动的同时,M点在OC上从C向O运动,N点在OA上从A向O运动,M的运动速度为每秒3个单位,N的运动速度为每秒a个单位.在运动过程中,△CMF能与△ANE全等吗?若能,求出此时a与t的值,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.实数$\frac{\sqrt{2}}{2}$,$\root{3}{8}$,0,-π,$\sqrt{16}$,$\frac{1}{3}$,0.1010010001…(相连两个1之间依次多一个0),其中无理数有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知a,b.c均为实数,a<b,那么下列不等式一定成立的是(  )
A.a-b>0B.-3a<-3bC.a|c|<b|c|D.a(c2+1)<b(c2+1)

查看答案和解析>>

同步练习册答案