精英家教网 > 初中数学 > 题目详情

若x2-9=0,求分式数学公式的值.

解:由方程x2-9=0,变形得:(x+3)(x-3)=0,
解得:x1=-3,x2=3,
因为分式有意义时,x-3≠0,即x≠3,所以x=-3,
==x-2=-3-2=-5.
分析:利用分解因式法求出已知方程的解,根据分式有意义时,分母不为0判断得到满足题意的x的值,然后把分式的分子利用十字相乘法分解因式后约分,然后把x的值代入求出即可.
点评:此题考查了分式的化简求值以及一元二次方程的解法.关于分式的运算,解题时首先要通观全局,弄清有哪些运算,然后观察能否用法则、定律、分解因式及公式来化简,化简后再代值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,BC=a,AC=b,AB=c,⊙D与BC、AC、AB都相切,切点分别是E、F、G,BA、ED的延长线交于点H,a、b是关于x的方程x2-(c+4)x+4c+8=0的两个根.
(1)求证:△ABC是直角三角形;
(2)若25asin∠BAC=9c,求四边形CEDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC的直角边AB为直径的⊙O,与斜边AC相交于点D,E是BC中点,连接DE.
(1)DE与⊙O相切吗?若相切,请给出证明;若不相切,请说明理由;
(2)若AC、AB的长分别是一元二次方程x2-8x+15=0的两个实根,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c与x轴交于A、B两点,若A、B两点的横坐标分别是一元二次方程x2-2x-3=0的两个实数根,与y轴交于点C(0,3),
(1)求抛物线的解析式;
(2)在此抛物线上求点P,使S△ABP=8.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a、b均为整数,直线y=ax+b与三条抛物线y=x2+3,y=x2+6x+7和y=x2+4x+5交点的个数分别是2,1,0,若bx2+ay2=6x,求x2+y2的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

加试题(本小题满分20分,其中(1)、(2)、(3)题各3分,(4)题11分)
(1)一个正数的平方根为3-a和2a+3,则这个正数是
81
81

(2)若x2+2x+y2-6y+10=0,则xy=
-1
-1

(3)已知a,b分别是6-
13
的整数部分和小数部分,则2a-b=
13
13

(4)阅读下面的问题,并解答问题:
1)如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数是多少?(请在下列横线上填上合适的答案)
分析:由于PA,PB,PC不在同一个三角形中,为了解决本题我们可以将△ABP绕顶点A逆时针旋转到△ACP′处,此时可以利用旋转的特征等知识得到:
  ①∠APB=∠AP′C=∠AP′P+∠PP′C;
  ②AP=AP′,且∠PAP′=
60
60
度,所以△APP′为
等边
等边
三角形,则∠AP′P=
60
60
度;
  ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C为
直角
直角
三角形,则∠PP′C=
90
90
度,从而得到∠APB=
150
150
度.
 2)请你利用第1)题的解答方法,完成下面问题:
如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为边BC上的点,且∠EAF=45°,试说明:EF2=BE2+FC2

查看答案和解析>>

同步练习册答案